The Inverse Scattering Problem in Structural Determinations

Part of the Topics in Current Physics book series (TCPHY, volume 20)


The aim of this contribution is to formulate, and to attempt to construct a solution to, the inverse scattering problem. In Sect.2.1, the fundamental epistemological foundations of this task are outlined. Section 2.2 presents the direct scattering problem, and the mathematical equipment required for treating the inverse problem is given in Sect.2.3.


Real Axis Scattered Field Real Zero Incident Field Hadamard Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 2.1
    Plato: The Collected Dialogues ( Princeton University Press, Princeton 1973 )Google Scholar
  2. 2.2
    K.R. Popper: The Logic of Scientific Discovery ( Hutchinson, London 1972 )Google Scholar
  3. 2.3
    J.W. Yolton: The Philosophy of Science of A.S. Eddington ( Martinus Nijhoff, The Hague 1960 )Google Scholar
  4. 2.4
    H.P. Baltes: “Introduction”, in Inverse Source Problems in Optics, ed. by H.P. Baltes, Topics in Current Physics, Vol. 9 ( Springer, Berlin Heidelberg, New York 1978 )CrossRefGoogle Scholar
  5. 2.5
    I. Kant: Critique of Pure Reason, translated by N. Kemp Smith ( Macmillan, London 1964 )Google Scholar
  6. 2.6
    I. Berlin: The Purpose of Philosophy“, in Concepts and Categories, ed. by I. Berlin ( Hogarth Press, London 1978 ) pp. 1–11Google Scholar
  7. 2.7
    A. Eddington: The Philosophy of Physical Science ( Cambridge University Press, Cambridge 1939 )zbMATHGoogle Scholar
  8. 2.8
    J. Agassi: Science in Flux ( Reidel, Dordrecht 1975 )CrossRefGoogle Scholar
  9. 2.9
    A. Eddington: Relativity Theory of Protons and Electrons ( Cambridge University Press, Cambridge 1936 )Google Scholar
  10. 2.10
    K.R. Popper: Conjectures and Refutations ( Routledge and Kegan Paul, London 1963 )Google Scholar
  11. 2.11
    J.P. Eckermann: Conversations with Goethe ( Dent and Sons, London 1951 )Google Scholar
  12. 2.12
    Marcus Annaeus Lucanus: The Civil War (The Pharsalia) ( Heinemann, London 1928 )Google Scholar
  13. 2.13
    M. Born, E. Wolf: Principles of Optics ( Pergamon Press, Oxford 1975 )Google Scholar
  14. 2.14
    M.J. Beran, G.B. Parrent, Jr.: Theory of Partial Coherence (Prentice-Hall,Englewood Cliffs 1964 )Google Scholar
  15. 2.15
    P.H. Morse, H. Feschbach: Methods of Theoretical Physics ( McGraw-Hill, New York 1953 )zbMATHGoogle Scholar
  16. 2.16
    G. Ross: Opt. Acta 25, 57 (1978)ADSCrossRefGoogle Scholar
  17. 2.17
    J.W. Goodman: Introduction to Fourier Optics ( McGraw-Hill, New York 1968 )Google Scholar
  18. 2.18
    U. Frisch: Ann. d’Astrophys. 29, 645 (1966); 30, 565 (1967)Google Scholar
  19. 2.19
    D.A. Jarvis: The Characterization of Orientation in Anisotropie Materials by Means of Elastic Light Scattering; Ph.D. Thesis, Queen Elizabeth College, University of London (1977)Google Scholar
  20. 2.20
    R.E.A.C. Paley, N. Wiener: Fourier Transforms in the Complex Domain (American Mathematical Society, Ann Arbor, Michigan 1934 )Google Scholar
  21. 2.21
    R.P. Boas: Entire Functions ( Academic Press, New York 1954 )zbMATHGoogle Scholar
  22. 2.22
    K. Chadan, P.C. Sabatier: Inverse Problems in Quantum Scattering Theory (Springer, Berlin, Heidelberg, New York 1977 )Google Scholar
  23. 2.23
    B.Ja. Levin: Distribution of Zeros of Entire Functions (American Mathematical Society, Providence, Rhode Island 1964 )Google Scholar
  24. 2.24
    T. Kawata: Fourier Analysis in Probability Theory ( Academic Press, New York 1972 )zbMATHGoogle Scholar
  25. 2.25
    E.C. Titchmarsh: Proc. Lond. Math. Soc. (2) 25, 283 (1925)MathSciNetCrossRefGoogle Scholar
  26. 2.26
    G. Ross, M.A. Fiddy, M. Nieto-Vesperinas, M.W.L. Wheeler: Proc. Roy. Soc. (London) A360, 25 (1973)ADSMathSciNetGoogle Scholar
  27. 2.27
    H.B. Voelcker, A.A.G. Requicha: IEEE Comm. 21, 933 (1973)CrossRefGoogle Scholar
  28. 2.28
    B.A. Fuks: Introduction to the Theory of Analytic Functions of Several Complex Variables (American Mathematical Society, Providence, Rhode Island 1963 )Google Scholar
  29. 2.
    M. Plancherel, G. Polya: Commentari Mathematici Helvetici 9,224 (1936–7)Google Scholar
  30. 2.30
    G. Ross, M.A. Fiddy, M. Nieto-Vesperinas, I. Manolitsakis: Opt. Acta 26, 229 (1979)ADSMathSciNetCrossRefGoogle Scholar
  31. 2.31
    D. Gabor: “Light and Information”, in Proc. Symposium on Astronomical Optics and Related Subjects, ed. by Z. Kopal ( North-Holland, Amsterdam 1956 ) pp. 17–30Google Scholar
  32. 2.32
    G. Ross: Phil. Trans. Roy. Soc. London A268, 177 (1970)ADSCrossRefGoogle Scholar
  33. 2.33
    J.T. Winthrop: J. Opt. Soc. Am. 67, 833 (1977)CrossRefGoogle Scholar
  34. 2.34
    C.E. Shannon: Bell Systems Techn. J. 27, 623 (1948)MathSciNetGoogle Scholar
  35. 2.35
    B.J. Hoenders, H.A. Ferwerda: Optik 37, 542 (1973)Google Scholar
  36. 2.36
    A.S.B. Holland: Introduction to the Theory of Entire Functions ( Academic Press, London 1973 )zbMATHGoogle Scholar
  37. 2.37
    G. Ross, M.A. Fiddy: Opt. Acta 25, 205 (1978)ADSCrossRefGoogle Scholar
  38. 2.38
    H.M. Nussenzveig: Causality and Dispersion Relations ( Academic Press, London 1972 )Google Scholar
  39. 2.39
    J.S. Toll: Phys. Rev. 104, 1760 (1956)ADSMathSciNetCrossRefGoogle Scholar
  40. 2.40
    D.L. Misell, R.E. Burge, A.H. Greenaway: J. Phys. D 7, L27 (1974)ADSCrossRefGoogle Scholar
  41. 2.41
    R.E. Burge, M.A. Fiddy, A.H. Greenaway, G. Ross: Proc. Roy. Soc. London A350, 191 (1976)zbMATHADSMathSciNetCrossRefGoogle Scholar
  42. 2.42
    A.H. Greenaway: Opt. Lett. 1, 10 (1977)ADSCrossRefGoogle Scholar
  43. 2.43
    H.A. Ferwerda: The Phase Reconstruction Problem for Wave Amplitudes and Coherence Functions“, in Inverse Source Problems in Optics,ed. by H.P. Baltes, Topics in Current Physics, Vol.9 (Springer, Berlin, Heidelberg, New York 1978) Chap.2Google Scholar
  44. 2.44
    D.L. Misell: J. Phys. D 6, L6 and 2200 (1973)Google Scholar
  45. 2.45
    R.W. Gerchberg, W.O. Saxton: Optik 35, 237 (1972)Google Scholar
  46. 2.46
    D.L. Misell: Adv. in Optical and Electron Microscopy 7, 185 (1978)Google Scholar
  47. 2.47
    G. Ross, G.J. Brownsey: Plastics and Rubber: Materials and Applications 1, 109 (1976)Google Scholar
  48. 2.48
    E. Wolf: J. Opt. Soc. Am. 60, 18 (1970)ADSCrossRefGoogle Scholar
  49. 2.49
    P.D. Rowley: J. Opt. Soc. Am. 59, 1946 (1969)CrossRefGoogle Scholar
  50. 2.50
    R. Dändliker, K. Weiss: Opt. Commun. 1, 323 (1970)ADSCrossRefGoogle Scholar
  51. 2.51
    W. Carter: J. Opt. Soc. Am. 60, 306 (1970)ADSCrossRefGoogle Scholar
  52. 2.52
    A. Klug, R.A. Crowther: Nature 238, 435 (1972)ADSCrossRefGoogle Scholar
  53. 2.53
    M.V. Berry, D.F. Gibbs: Proc. Roy. Soc. Lond. A314, 143 (1970)ADSCrossRefGoogle Scholar
  54. 2.54
    D.W. Sweeney, C.M. Vest: Appl. Opt. 12, 2649 (1973)ADSCrossRefGoogle Scholar
  55. 2.55
    H.H. Lipson, W.A. Wooster: Interpretation of X-ray Diffraction Photographs ( Macmillan, London 1960 )Google Scholar
  56. 2.56
    H.G. Schmidt-Weinmar: J. Opt. Soc. Am. 65, 1059 (1975)ADSCrossRefGoogle Scholar
  57. 2.57
    A.F. Fercher, H. Bartelt, H. Becker, E. Wiltschko: Appl. Opt. 18, 2427 (1979)ADSCrossRefGoogle Scholar
  58. 2.58
    B.J. Hoenders: The Uniqueness of Inverse Problems“, in Inverse Source Problems in Optics,ed. by H.P. Baltes, Topics in Current Physics, Vol.9 (Springer, Berlin, Heidelberg, New York 1978) Chap.3Google Scholar
  59. 2.59
    N. Wiener: The Fourier Integral and Certain of its Applications ( Dover, New York 1933 )Google Scholar
  60. 2.60
    A. Papoulis: Probability, Random Variables and Stochastic Processes ( McGraw-Hill, New York 1965 )zbMATHGoogle Scholar
  61. 2.61
    J.L. Doob: Stochastic Processes ( Wiley, New York 1967 )Google Scholar
  62. 2.62
    G. Ross: Opt. Acta 15, 451 (1968)ADSCrossRefGoogle Scholar
  63. 2.63
    E. Lukacs: Characteristic Functions ( Griffin, London 1960 )zbMATHGoogle Scholar
  64. 2.64
    R.C. Bourret: Can. J. Phys. 40, 782 (1962)zbMATHADSMathSciNetCrossRefGoogle Scholar
  65. 2.65
    R.C. Bourret: Nuovo Cimento 26, 1 (1962)zbMATHMathSciNetGoogle Scholar
  66. 2.66
    J.B. Keller: Proc. Symp. Appl. Math. 13, 227 (1962)Google Scholar
  67. 2.67
    Yu.V. Linnik: Decomposition of Probability Distributions ( Oliver and Boyd, London 1964 )zbMATHGoogle Scholar
  68. 2.68
    E.C. Titchmarsh: Introduction to the Theory of the Fourier Integral (Oxford University Press, Oxford 1948 )Google Scholar
  69. 2.69
    G.N. Watson: A Treatise on the Theory of Bessel Functions ( Cambridge University Press, Cambridge 1958 )Google Scholar
  70. 2.70
    G. Ross: Opt. Acta 16, 95 (1969)ADSCrossRefGoogle Scholar
  71. 2.71
    G. Ross, R.L. Addleman: J. Phys. D 6, 1537 (1973)ADSCrossRefGoogle Scholar
  72. 2.72
    L.H. Koopmans: The Spectral Analysis of Time Series ( Academic Press, New York 1974 )zbMATHGoogle Scholar
  73. 2.73
    G.M. Jenkins, D.G. Watts: Spectral Analysis and its Applications ( Holden-Day, San Francisco 1968 )zbMATHGoogle Scholar
  74. 2.74
    R.B. Blackman, J.W. Tukey: The Measurement of Power Spectra ( Dover, New York 1958 )Google Scholar
  75. 2.75
    S. Bochner: Lectures on Fourier Integrals ( Princeton University Press, Princeton 1959 )zbMATHGoogle Scholar
  76. 2.76
    E. Parzen: Technometrics 3, 167 (1961)zbMATHMathSciNetCrossRefGoogle Scholar
  77. 2.77
    M. Nieto-Vesperinas: “Statistics of Amorphous Absorbing Media and Object Wave Determination Using the Theory of Entire Functions”; Ph.D. Thesis, Queen Elizabeth College, University of London (1978)Google Scholar
  78. 2.78
    G.F. Chew: The Analytic S Matrix (Benjamin, New York 1966 )Google Scholar
  79. 2.79
    N.J. Bershad: J. Opt. Soc. Am. 59, 157 (1969)ADSCrossRefGoogle Scholar
  80. 2.80
    J.W. von Goethe: Faust, translated by W.H. Bruford ( Dent and Sons, London 1954 )Google Scholar
  81. Lakatos, I.: Mathematics, Science and Epistemology, ed. by J. Worral, G. Currie (Cambridge University Press 1978 )CrossRefGoogle Scholar
  82. Grene, M.: The Knower and the Known ( Faber and Faber, London 1966 )Google Scholar
  83. Ronkin, L.I.: An analogy of the canonical product for entire functions of several complex variables. Trans. Moscow Math. Soc. 18 (1968)Google Scholar
  84. Bochner, S., Martin, W.: Several Complex Variables (Princeton University Press 1948) Nussenzveig, H.M.: Phase problem in coherence theory. J. Math. Phys. 8, 561 (1967)Google Scholar
  85. Hoenders, B.J.: On the solution of the phase retrieval problem. J. Math. Phys. 16, 1719 (1975)ADSMathSciNetCrossRefGoogle Scholar
  86. Wolf, E.: Is a complete determination of the energy spectrum of light possible from measurements of the complex degree of coherence? Proc. Phys. Soc. 80, 1269 (1962)ADSCrossRefGoogle Scholar
  87. Helstrom, C.W.: Resolvable degrees of freedom in observation of a coherent object. J. Opt. Soc. Am. 67, 833 (1977)ADSCrossRefGoogle Scholar
  88. Mitsui, T.: “X-ray diffraction studies of membranes”, in Advances in Biophysics, ed. by Masao Kotani, Vol.10 (University Park Press 1978) p. 115Google Scholar
  89. O’Neill, E.L., Walther, A.: The question of phase in image formation. Opt. Acta 10, 33 (1963)ADSMathSciNetCrossRefGoogle Scholar
  90. Saxton, W.O.: Computer Techniques for Image Processing in Electron Microscopy ( Academic Press, New York 1978 )Google Scholar
  91. de Bruijn, N.G.: The roots of trigonometric integrals. Duke. Math. J. 17, 197 (1950)zbMATHMathSciNetCrossRefGoogle Scholar
  92. de Brange, L.: Hilbert Spaces of Entire Functions (Prentice-Hall, New York 1968 )Google Scholar
  93. Bond, F.E., Cahn, C.R.: On sampling the zeros of bandwidth limited signals. I.R.E. Trans. Information Theory, September 110 (1958)Google Scholar
  94. Levinson, N.: Gap and density theorems. Amer. Math. Soc. Colloq. Publ. 26 (1940)Google Scholar
  95. Cartwright, M.L.: On the zeros of certain integral functions I and II. Quart. J. Math. (Oxford Series) (1) 1, 38 (1930) and 2, 113 (1931)CrossRefGoogle Scholar
  96. Cartwright, M.L.: Integral Functions, Cambridge tracts in mathematics and mathematical physics, No.44 (Cambridge University Press 1955 )Google Scholar
  97. Stein, R.S., Wilson, P.R.: Scattering of light by polymer films possessing correlated orientation fluctuations. J. Appl. Phys. 33, 1914 (1962)ADSCrossRefGoogle Scholar
  98. Stein, R.S., Hotta, T.: Light scattering from oriented polymer films. J. Appl. Phys. 35, 2237 (1964)ADSCrossRefGoogle Scholar
  99. Stein, R.S., Erhardt, P.F., Clough, S.B., Adams, G.: Scattering of light by films having non-random orientation fluctuations. J. Appl. Phys. 37, 3980 (1966)ADSCrossRefGoogle Scholar
  100. Roe, R.J., Krigbaum, W.R.: Description of crystalline orientation in polycrystalline materials having fibre texture. J. Chem. Phys. 40, 2608 (1964)ADSCrossRefGoogle Scholar
  101. Krigbaum, W.R., Roe, R.J.: Crystalline orientation in materials having fibre texture II. A study of strained samples of cross linked polyethylene. J. Chem. Phys. 41, 737 (1964)ADSCrossRefGoogle Scholar
  102. Roe, R.J.: Description of crystalline orientation in polycrystalline materials III. General solution to pole figure inversion. J. Appl. Phys. 36, 2024 (1965)ADSCrossRefGoogle Scholar
  103. Roe, R.J. Methods of description of orientation in polymers. J. Polymer Sci., Pt. A-2, 8, 1187 (1970)Google Scholar
  104. Nomura, S., Kawai, H., Kumira, I., Kagiyama, M.: General description of orientation factors in terms of expansion of orientation distribution function in a series of spherical harmonics. J. Polymer Sci. Pt. A-2, 8, 383 (1970)CrossRefGoogle Scholar
  105. Goldstein, M., Michalik, E.R.: Theory of scattering by an inhomogeneous solid possessing fluctuations in density and anisotropy. J. Appl. Phys. 26, 1450 (1955)zbMATHADSCrossRefGoogle Scholar
  106. Debye, P., Bueche, A.M.: Scattering by an inhomogeneous solid. J. Appl. Phys. 20, 518 (1949)ADSCrossRefGoogle Scholar
  107. Ward, I.M.: Optical and mechanical anisotropy of crystalline polymers. Proc. Phys. Soc. 80, 1176 (1962)ADSMathSciNetCrossRefGoogle Scholar
  108. Nieto-Vesperinas, M., Ross, G., Fiddy, M.A.: “The theory of light scattering in absorbing media”, in: Optica Hoy y Mariana, ed. by J. Bescos, A. Hidalgo, L. Plaza, J. Santamaria ( Instituto de Optica, Madrid 1978 ) pp. 747–750Google Scholar
  109. Ross, G., Fiddy, M.A., Nieto-Vesperinas, M., Manolitsakis, I.: “The nature of the analytically-of scattered fields in the Fresnel and Fraunhofer region”, in: Optica Hoy y Mariana, ed. by J. Bescos, A. Hidalgo, L. Plaza, J. Santamaria ( Instituto de Optica, Madrid 1978 ) pp. 739–742Google Scholar
  110. Fiddy, M.A., Ross, G., Nieto-Vesperinas, M.: “The encoding of structural information, in scattering and image formation, by the zeros of entire functions”, in: Optica Hoy y Mariana, ed. by J. Bescos, A. Hidalgo, L. Plaza, J. Santamaria ( Instituto de Optica, Madrid 1978 ) pp. 743–746Google Scholar
  111. Ross, G., Fiddy, M.A., Moezzi, H., Nieto-Vesperinas, M: “The inverse problem in light scattering”, in: Antennas and Propagation, Vol.I., International Symposium Digest (IEEE 1979) pp. 232–235Google Scholar
  112. Fiddy, M.A., Ross G.: Analytic Fourier optics: the encoding of information by complex zeros. Opt. Acta 26, 1139–1146 (1979)ADSMathSciNetCrossRefGoogle Scholar
  113. Ross, G., Jarvis, D.A.: The characterization of orientation in anisotropic media by means of elastic light scattering. I. The inhomogeneity of anisotropic media and its description. Opt. Acta 27, 359–370 (1980)ADSMathSciNetCrossRefGoogle Scholar
  114. Ross, G., Jarvis, D.A.: The characterization of orientation in anisotropic media by means of elastic light scattering. II. The elastic scattering of light by an inhomogeneous medium. Opt. Acta 27, 371–384 (1980)ADSMathSciNetCrossRefGoogle Scholar
  115. Ross, G., Fiddy, M.A., Moezzi, H.: The solution to the inverse scattering problem, based on zero location from two measurements. Opt. Acta (in press)Google Scholar
  116. Ross, G., Nieto-Vesperinas, M.: Theory of light scattering by amorphous absorbing media. Opt. Acta (in press)Google Scholar
  117. Fienup, J.R.: Reconstruction of an object from the modulus of its Fourier transform. Opt. Lett. 3, 27–29 (1978)ADSCrossRefGoogle Scholar
  118. Bruck, Yu. M., Sodin, L.G.: On the ambiguity of the image reconstruction problem. Opt. Commun. 30, 304–308 (1979)ADSCrossRefGoogle Scholar
  119. Boucher, R.H.: “Convergence of algorithms for phase retrieval from two intensity distributions”, in: Proc. I.O.C.C. Meeting, Washington April 8, 1980, to be published by S.P.I.E.Google Scholar
  120. Misell, D.L.: “The phase problem in electron microscopy”, in: Advances in Optical and Electron Microscopy, Vol. 7, ed. by V.E. Cosslett, R. Barer ( Academic Press, London 1978 ) pp. 185–219Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

There are no affiliations available

Personalised recommendations