Progress in Inverse Optical Problems

Part of the Topics in Current Physics book series (TCPHY, volume 20)


The direct problem in optical physics is to predict the emission or propagation of radiation on the basis of a known constitution of sources or scatterers. The inverse or indirect problem is to deduce features of sources or scattering objects from the emitted or scattered radiation that has propagated to a detector. A small selection out of the large number of topics pertinent to the inverse problem in optical physics was examined in a previous volume in this series, entitled Inverse Source Problems in Optics [1.1], namely the phase retrieval problems, the question of uniqueness in the reconstruction of scatterers, the reconstruction of subwavelength sources, the connection between coherence and radiometric quantities, and the determination of statistical features of random phase screens from scattering data. A number of topics not covered by [1.1] are discussed in the present volume, Inverse Scattering Problems in Optics: deterministic and stochastic structural determinations using the theory of entire functions, the photon-counting statistics of optical scintillations with emphasis on the recently discovered K distributions, the connection between the raw data of photodetection and the properties of the received radiation field (the inverse detector problem), the ubiquitous question of the numerical instability of inverse problems, the multiangular absorption approach to combustion diagnostics, and polarization effects in inverse electromagnetic scattering.


Inverse Problem Partial Coherence Phase Problem Inverse Scatter Problem Random Scatterer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.1
    H.P. Baltes (ed.): Inverse Source Problems in Optics, Topics in Current Physics, Vol.9 (Springer, Berlin, Heidelberg, New York 1978 )zbMATHGoogle Scholar
  2. 1.2
    W.-M. Boerner: “State of the Art Review on Polarization Utilization in Electromagnetic Inverse Scattering”, Tech.Rpt. 78–3. Communications Laboratory, University of Illinois, Chicago (1978)Google Scholar
  3. 1.3
    N. Bleistein, J.K. Cohen: “Survey of Recent Progress on Inverse Problems”, Tech.Rpt. MS-R-7806. Denver Research Institute, University of Denver, Colorado (1978)Google Scholar
  4. 1.4
    V.H. Weston: “Electromagnetic Inverse Scattering”, in Electromagnetic Scattering ( Academic Press, New York 1978 ) pp. 289–313Google Scholar
  5. 1.5
    H.P. Baltes: “Inverse Problems in Optics”, in Proc. Intern. Conf. Lasers ‘78 (STS Press, McLean, Virginia 1979 ) pp. 716–722Google Scholar
  6. 1.6
    P.C. Sabatier (ed.): Applied Inverse Problems, Lecture Notes in Physics, Vol.85 (Springer, Berlin, Heidelberg, New York 1978 )zbMATHGoogle Scholar
  7. 1.7
    L. Colin: Mathematics of Profile Inversion,NASA Technical Memorandum X-62.150 (Ames Research Center, Moffett Field, Calif. 1972) Chap.6: Electromagnetic ScatteringGoogle Scholar
  8. 1.8
    K. Chadan, P.C. Sabatier: Inverse Problems in Quantum Scattering Theory (Springer, Berlin, Heidelberg, New York 1977 )Google Scholar
  9. 1.9
    A.N. Tikhonov, V.Y. Arsenin: Solutions of Ill-Posed Problems, translation ed. by F. John ( Winston/Wiley, Washington DC/New York 1977 )Google Scholar
  10. 1.10
    A. Ishimaru: “The Beam Wave Case and Remote Sensing”, in Laser Beam Propagation in the Atmosphere, ed. by J.W. Strohbehn, Topics in Applied Physics, Vol. 25 ( Springer, Berlin, Heidelberg, New York 1978 ) pp. 129–170Google Scholar
  11. 1.11
    A. Ishimaru: Wave Propagation and Scattering in Random Media, Vol.2 (Academic Press, New York 1978 ) pp. 493–512Google Scholar
  12. 1.12
    A. Deepak (ed.): Inversion Methods in Atmospheric Remote Sounding ( Academic Press, New York 1978 )Google Scholar
  13. 1.13
    E.D. Hinkley (ed.): Laser Monitoring of the Atmosphere, Topics in Applied Physics, Vol.14 (Springer, Berlin, Heidelberg, New York 1976 )Google Scholar
  14. 1.14
    A.L. Fymat, V.E. Zuev (eds.): Remote Sensing of the Atmosphere: Inversion Methods and Applications ( Elsevier, Amsterdam 1978 )Google Scholar
  15. 1.15
    T.S. Huang (ed.): Picture Processing and Digital Filtering, 2nd ed., Topics in Applied Physics, Vol.6 (Springer, Berlin, Heidelberg, New York 1979 )zbMATHGoogle Scholar
  16. 1.16
    A. Rosenfeld (ed.): Digital Picture Analysis, Topics in Applied Physics, Vol.11 (Springer, Berlin, Heidelberg, New York 1976 )zbMATHGoogle Scholar
  17. 1.17
    D. Casasent (ed.): Optical Data Processing, Applications, Topics in Applied Physics, Vol. 23 ( Springer, Berlin, Heidelberg, New York 1977 )Google Scholar
  18. 1.18
    W.O. Saxton: Computer Techniques for Image Processing in Electron Microscopy ( Academic Press, New York 1978 )Google Scholar
  19. 1.19
    P.W. Hawkes (ed.): Computer Processing of Electron Microscope Images, Topics in Current Physics, Vol. 13 ( Springer, Berlin, Heidelberg, New York 1980 )Google Scholar
  20. 1.20
    B. Saleh: Photoelectron Statistics, Springer-Series in Optical Sciences, Vol. 6 ( Springer, Berlin, Heidelberg, New York 1978 )Google Scholar
  21. 1.21
    R. Barakat, J. Blake: Theory of Photoelectron Counting Statistics: an Essay, Phys. Rep. 60, 225–340 (1980)Google Scholar
  22. 1.22
    R.J. Oliver: Adv. Phys. 27, 387–435 (1978)ADSGoogle Scholar
  23. 1.23
    A.M.J. Huiser: “Fundamental Problems in the Evaluation of Electron Micrographs”, Ph.D. Thesis, State University, Groningen (1979)Google Scholar
  24. 1.24
    P. Van Toorn: “Proposals for the Solutions of the Phase Problem in Electron Microscopy”, Ph.D. Thesis, State University, Groningen (1979)Google Scholar
  25. 1.25
    M. Nieto-Vesperinas: “Statistics of Amorphous Absorbing Media and Object Wave Determination Using the Theory of Entire Functions”, Ph.D. Thesis, Queen Elizabeth College, University of London (1978)Google Scholar
  26. 1.26
    A. Selloni: “Microscopic Models of Photodetection”, Ph.D. Thesis, Ecole Polytechnique Fédérale, Lausanne (1979)Google Scholar
  27. 1.27
    C. De Mol: “Sur la Régularisation des Problèmes Inverses Linéaires”, Ph.D. Thesis, Université Libre, Bruxelles (1979)Google Scholar
  28. 1.28
    J.G. McWhirter, E.R. Pike: J. Phys. A. 11, 1729–1745 (1978)ADSMathSciNetGoogle Scholar
  29. 1.29
    J.G. McWhirter, E.R. Pike: Phys. Scr. 19, 417–425 (1979)ADSGoogle Scholar
  30. 1.30
    J.G. McWhirter: Opt. Acta 27, 83–105 (1980)ADSGoogle Scholar
  31. 1.31
    A. Roger, D. Maystre: Opt. Acta 26, 447–460 (1979)ADSMathSciNetGoogle Scholar
  32. 1.
    A. Roger, D. Maystre: “A Method for Inverse Problems in Optics. Application to Diffraction Gratings”, to be publishedGoogle Scholar
  33. 1.33
    A.L. Fymat: Appl. Opt. 18, 126–130 (1979)ADSGoogle Scholar
  34. 1.34
    G.E. Shaw: Appl. Opt. 18, 988–993 (1979)ADSGoogle Scholar
  35. 1.35
    A. Cohen, J. Cooney, G. Raviv, N. Wolfson: Appl. Opt. 18, 2466–2469 (1979)ADSGoogle Scholar
  36. 1.36
    S.R. Powers, D.J. Somerford: Opt. Commun. 26, 313–317 (1978)ADSGoogle Scholar
  37. 1.37
    V. Pollak: Opt. Acta 25, 929–936 (1978)ADSGoogle Scholar
  38. 1.38
    R.H.T. Bates: Optik 51, 161–170 (1978)Google Scholar
  39. 1.39
    R.H.T. Bates: Optik 51, 223–234 (1978)Google Scholar
  40. 1.40
    P.J. Napier, R.H.T. Bates: Astron. Astrophys. Suppl. 15, 427–430 (1974)ADSGoogle Scholar
  41. 1.41
    R.H.T. Bates: Mon. Not. R. Astr. Soc. 142, 413–428 (1969)ADSGoogle Scholar
  42. 1.42
    R.H.T. Bates, P.J. Napier: Mon. Not. R. Astr. Soc. 158, 405–424 (1972)ADSGoogle Scholar
  43. 1.43
    R.M. Lewitt, R.H.T. Bates: Optik 50, 19–33 (1978)Google Scholar
  44. 1.44
    R.M. Lewitt, R.H.T. Bates, T.M. Peter: Optik 50, 85–109 (1978)Google Scholar
  45. 1.45
    R.M. Lewitt, R.H.T. Bates: Optik 50, 189–204 (1978)Google Scholar
  46. 1.46
    R.H.T. Bates, T.M. Peters: New Zealand J. Sci. 14, 883–896 (1971)Google Scholar
  47. 1.47
    A.E. McKinnon, M.J. McDonnell, P.J. Napier, R.H.T. Bates: Optik 44, 253–272 (1976)ADSGoogle Scholar
  48. 1.48
    R.H.T. Bates, P.J. Napier, A.E. McKinnon, M.J. McDonnell: Optik 44, 183–201 (1976)Google Scholar
  49. 1.49
    R.H.T. Bates, P.T. Gough: IEEE Trans. C-24, 449–456 (1975)Google Scholar
  50. 1.50
    R.H.T. Bates, M.J. McDonnell, P.T. Gough: Proc. IEEE 65, 138–143 (1977)ADSGoogle Scholar
  51. 1.51
    R.H.T. Bates, M.O. Milner, G.I. Lund, A.D. Seagar: Opt. Commun. 26, 22–26 (1978)ADSGoogle Scholar
  52. 1.52
    G.L. Rogers: Opt. Commun. 30, 1–3 (1979)ADSGoogle Scholar
  53. 1.53
    P.J. Napier, R.H.T. Bates: Proc. IEEE 120, 30–34 (1973)Google Scholar
  54. 1.54
    R.H.T. Bates: Int. J. Eng. Sci. 9, 1107–1121 (1971)Google Scholar
  55. 1.55
    P.J. Napier, R.H.T. Bates: Int. J. Eng. Sci. 9, 1193–1208 (1971)Google Scholar
  56. 1.56
    R.H.T. Bates, W.M. Boerner, G.R. Dunlop: Opt. Commun. 18, 421–423 (1976)ADSGoogle Scholar
  57. 1.57
    R.H.T. Bates: Arch. Rational Mech. Anal. 38, 123–130 (1970)zbMATHMathSciNetGoogle Scholar
  58. 1.58
    P. Van Toorn, A.M.J. Huiser, H.A. Ferwerda: Optik 51, 309–326 (1978)Google Scholar
  59. 1.59
    G. Ross, M.A. Fiddy, M. Nieto-Vesperinas, M.W.L. Wheeler: Optik 49, 71–80 (1977)Google Scholar
  60. 1.60
    M.A. Fiddy, H.A. Greenaway: Opt. Commun. 29, 270–272 (1979)ADSGoogle Scholar
  61. 1.61
    W.D. Montgomery: Opt. Lett. 2, 120–121 (1978)ADSGoogle Scholar
  62. 1.62
    D. Psaltis, D. Casasent: Appl. Opt. 17, 1136–1140 (1978)ADSGoogle Scholar
  63. 1.63
    S.R. Robinson: J. Opt. Soc. Am. 68, 87–92 (1978)ADSGoogle Scholar
  64. 1.64
    A.J. Devaney, R. Chidlaw: J. Opt. Soc. Am. 68, 1352–1354 (1978)ADSGoogle Scholar
  65. 1.65
    M.A. Fiddy, A.H. Greenaway: Nature 276, 421 (1978)ADSGoogle Scholar
  66. 1.66
    J.C. Dainty: The Role of Entropy in the Inverse Problem“, presented at OPTICS ‘78, 20–23 September 1978, University of Bath, EnglandGoogle Scholar
  67. 1.67
    Y. Ohtsuka: Opt. Lett. 1, 133–134 (1977)ADSGoogle Scholar
  68. 1.68
    J.R. Fienup: Opt. Lett. 3, 27–29 (1978)ADSGoogle Scholar
  69. 1.69
    B.J. Hoenders, H.P. Baltes: Lett. Nuovo Cimento 25, 206–208 (1979)Google Scholar
  70. 1.70
    B.J. Hoenders, H.P. Baltes: J. Phys. A13, 995–1006 (1980)ADSMathSciNetGoogle Scholar
  71. 1.71
    A.J. Devaney: J. Math. Phys. 20, 1687–1691 (1979)ADSGoogle Scholar
  72. 1.72
    H.P. Baltes, B.J. Hoenders: Phys. Lett. 69A, 249–250 (1978)Google Scholar
  73. 1.73
    B. Steinle, H.P. Baltes: J. Opt. Soc. Am. 67, 241–247 (1977)ADSGoogle Scholar
  74. 1.74
    D. McGuire: Opt. Commun. 29, 17–21 (1979)ADSGoogle Scholar
  75. 1.75
    J.K. Cohen, N. Bleistein: The Singular Function of a Surface and Physical Optics Inverse Scattering“, Tech. Rpt. MS-R-7906 (Department of Mathematics, University of Denver, Denver, Colorado 1978) and Wave Motion 1, 153–161 (1979)MathSciNetGoogle Scholar
  76. 1.76
    G.B. Gillman: Opt. Commun. 29, 261–264 (1979)ADSGoogle Scholar
  77. 1.77
    A.F. Fercher, H. Bartelt, H. Becker, E. Wiltschko: Appl. Opt. 18, 2427–2439 (1979)ADSGoogle Scholar
  78. 1.78
    B. Gopinath: J. Math. Phys. 17, 1099–1104 (1976)ADSMathSciNetGoogle Scholar
  79. 1.79
    A. Roger, D. Maystre, M. Cadilhac: J. Optics (Paris) 9, 83–90 (1978)ADSGoogle Scholar
  80. 1.80
    P.W. Hawkes: Optik 50, 353–370 (1978)Google Scholar
  81. 1.81
    P. De Santis, F. Gori, G. Guattari, C. Palma: Opt. Commun. 29, 256–260 (1979)ADSGoogle Scholar
  82. 1.82
    E. Jakeman, P.N. Pusey: J. Phys. A 8, 369–391 (1975)ADSGoogle Scholar
  83. 1.83
    P.N. Pusey, E. Jakeman: J. Phys. A 8, 392–410 (1975)ADSGoogle Scholar
  84. 1.84
    E. Jakeman, J.G. McWhirter: J. Phys. A 9, 785–797 (1976)ADSGoogle Scholar
  85. 1.85
    V.I. Tatarskii: “Locally Homogeneous Fields with Smoothly Varying Mean Characteristics”, in The Effects of the Turbulent Atmosphere on Wave Propagation ( Israel Program for Scientific Translations, Jerusalem 1971 ) 7Google Scholar
  86. 1.86
    A. Walther: Opt. Lett. 3, 127–129 (1978)ADSGoogle Scholar
  87. 1.87
    A. Walther: J. Opt. Soc. Am. 68, 1606–1610 (1978)ADSGoogle Scholar
  88. 1.88
    H.A. Ferwerda: “Coherence of Illumination in Electron Microscopy”, in Image Processing and Coherence in Physics,Workshop Les Houches, 12–13 March (1979) to be publishedGoogle Scholar
  89. 1.89
    H.P. Baltes, B. Steinle, E. Jakeman, B. Hoenders: Infrared Phys. 19, 461–464 (1979)ADSGoogle Scholar
  90. 1.90
    B.J. Hoenders, E. Jakeman, H.P. Baltes, B. Steinle: Opt. Acta 26, 1307–1319 (1979)Google Scholar
  91. 1.91
    H.P. Baltes, H.A. Ferwerda: Lett. Nuovo Cimento 27, 541–543 (1980)MathSciNetGoogle Scholar
  92. 1.
    H.P. Baltes, H.A. Ferwerda, A.S. Glass, B. Steinle: “Retrieval of Structural Information from Far-Zone Intensity and Coherence of Scattered Radiation”, Opt. Acta (in press)Google Scholar
  93. 1.93
    D.J. Carpenter, C. Pask: Opt. Acta 24, 939–948 (1977)ADSGoogle Scholar
  94. 1.94
    L.P. Boivin: Appl. Opt. 17, 3323–3328 (1978)ADSGoogle Scholar
  95. 1.95
    P.F. Gray: Opt. Acta 25, 765–775 (1978)ADSGoogle Scholar
  96. 1.96
    J.C. Leader: Opt. Acta 25, 395–413 (1978)MathSciNetGoogle Scholar
  97. 1.97
    J.C. Leader: J. Opt. Soc. Am. 68, 1332–1338 (1978)ADSGoogle Scholar
  98. 1.
    J.C. Leader: “Equivalent Source Coherence of Laser-Illuminated Rough Surfaces”, submitted to Opt. ActaGoogle Scholar
  99. 1.99
    J.C. Leader: J. Opt. Soc. Am. 66, 183 (1976)ADSGoogle Scholar
  100. 1.100
    J.C. Leader: “Similarities and Distinctions between Coherence Theory Relations and Laser Scattering Phenomena”, preprint (1979)Google Scholar
  101. 1.101
    E. Wolf, W.H. Carter: J. Opt. Soc. Am. 68, 953–964 (1978)ADSGoogle Scholar
  102. 1.102
    G. Ross: Opt. Acta 25, 57–66 (1977)ADSGoogle Scholar
  103. 1.103
    E. Wolf: J. Opt. Soc. Am. 68, 1597–1605 (1978)ADSGoogle Scholar
  104. 1.104
    H.P. Baltes, A. Quattropani, P. Schwendimann: J. Phys. A 12, L35 - L37 (1979)ADSGoogle Scholar
  105. 1.105
    L. Mandel: Opt. Lett. 4, 205–207 (1979)ADSGoogle Scholar
  106. 1.106
    G. Kortüm: Reflectance Spectroscopy (Springer, Berlin, Heidelberg, New York 1969) Chap.2Google Scholar
  107. 1.107
    D.E. Barrick: “Rough Surfaces”, in Radar Cross Section Handbook,ed. by G.T. Ruck (Plenum Press, New York 1970) Chap.9Google Scholar
  108. 1.108
    A. Walther: J. Opt. Soc. Am. 58, 1256–1259 (1968)ADSGoogle Scholar
  109. 1.109
    C. Pask: Opt. Acta 24, 235–240 (1977)ADSGoogle Scholar
  110. 1.110
    W.T. Welford: Opt. Quantum Electron. 9, 269–287 (1971)Google Scholar
  111. 1.111
    L.E. Estes, L.M. Narducci, R.A. Tuft: J. Opt. Soc. Am. 61, 1301–1306 (1971)ADSGoogle Scholar
  112. 1.112
    M. Bouguer: Traité d’Optique sur Za Gradation de la Lumière, ed. by Abbé de la Caille (Guerin & Delatour, Paris 1760 ) pp. 161–228Google Scholar
  113. 1.113
    P. Beckmann: “Part I - Theory”, in The Scattering of Electromagnetic Waves from Rough Surfaces, ed. by P. Beckmann, A. Spizzichino ( Pergamon Press, London 1963 )Google Scholar
  114. 1.114
    P.J. Chandley: Opt. Quantum Electron. 8, 329–333 (1976)Google Scholar
  115. 1.115
    A. Papoulis: J. Opt. Soc. Am. 64, 779–788 (1974)ADSGoogle Scholar
  116. 1.116
    A.T. Friberg: J. Opt. Soc. Am. 69, 192–198 (1979)ADSGoogle Scholar
  117. De Santo, J.A., Sâenz, A.W., Zachary, W.W. (eds.): Mathematical Methods and Applications of Scattering Theory, Lecture Notes in Physics, Vol.130 (Springer, Berlin, Heidelberg, New York 1980 )Google Scholar
  118. Herman, G.T.: Image Reconstruction from Projections: Implementation and Applications, Topics in Applied Physics, Vol. 32 ( Springer, Berlin, Heidelberg, New York 1979 )Google Scholar
  119. Van Schoonefeld, C. (ed.): Image Formation from Coherence Function in Astronomy (Reidel Pub. Comp., Dordrecht 1979 )Google Scholar
  120. Mesla, J.L., Cohn, D.L.: Decision and Estimation Theory ( McGraw Hill, New York 1978 )Google Scholar
  121. Bates, R.H.T., Milane, R.P.: Time domain approach to inverse scattering. IEEE-AP, submittedGoogle Scholar
  122. Nussenzveig, H.M.: Causality and Analyticity in Optics. Proc. ICO Meeting Optics in Four Dimensions, Ensenada, Mexico 1980Google Scholar
  123. Schmidt-Weinmar, H.G.: Superresolution with coherent light. Proc. Intern. Conf. Lasers 1979 (STS Press, McLean, Virginia 1980) in pressGoogle Scholar
  124. Schmidt-Weinmar, H.G., Gunn, D.W.K., Schmidt-Weinmar, M.L.: Sources and the plane-wave representation of the electromagnetic field. Can. J. Phys. (to be published)Google Scholar
  125. Schmidt-Weinmar, H.G., Gunn, D.W.K., Schmidt-Weinmar, M.L.: Complex planar frequencies and causality in the halfspace representation of the electromagnetic field of sources of wavelength dimensions. Project Report, Dept. Electr. Eng., University of Alberta, Edmonton, Canada (1980)Google Scholar
  126. Boivin, R., Boivin, A.: Optimized amplitude filtering for superresolution over a restricted field. I. Achievement of maximum central irradiance under an energy constraint. Opt. Acta 27, 587–610 (1980)Google Scholar
  127. Roger, A.: Grating profile optimizations by inverse scattering methods. Opt. Commun. 32, 11–13 (1980)ADSGoogle Scholar
  128. Huiser, A.M.: On the influence of partial coherent illumination on the solvability of the phase problem in electron microscopy. Optik 55, 241–252 (1980)Google Scholar
  129. Barakat, R.: Moment estimator approach to the retrieval problem in coherence theory. J. Opt. Soc. Am. 70, 688–694 (1980)ADSMathSciNetGoogle Scholar
  130. Hoenders, B.J.: The unique solution of the inverse diffraction problem. Opt. Commun. 30, 327–328 (1979)ADSGoogle Scholar
  131. Hoenders, B.J.: On the inversion of an integral equation relating two wavefunctidns in planes of an optical system suffering from an arbitrary number of aberrations. Opt. Acta 26, 711–730 (1979)ADSMathSciNetGoogle Scholar
  132. Bates, R.H.T.: Fringe visibility intensities may uniquely define brightness distributions. Astron. Astrophys. 70, L27 - L29 (1978)ADSGoogle Scholar
  133. Bates, R.H.T., Cady, F.M.: Towards true imaging by wideband speckle interferometry. Opt. Commun. (in press)Google Scholar
  134. Collet, E., Wolf, E.: New equivalence theorems for planar sources that generate the same distributions of radiant intensity. J. Opt. Soc. Am. 69, 942–950 (1979)ADSGoogle Scholar
  135. Dekkers, N.H.: Object wave reconstruction in STEM. Optik 53, 131–142 (1979)Google Scholar
  136. Gilbert, A.D., Scott, T.C.: The deduction of surface profiles from the reflection of horizontal light sources. II. Calculation of the surface profile. Opt. Acta 27, 767–781 (1980)ADSGoogle Scholar
  137. Deans, S.R.: A unified radon inversion formula. J. Math. Phys. 19, 2346–2349 (1978)zbMATHADSMathSciNetGoogle Scholar
  138. Weston, V.H.: Non-linear approach to inverse scattering. J. Math. Phys. 20, 53–59 (1979)zbMATHADSMathSciNetGoogle Scholar
  139. Weston, V.H.: Inverse problem for reduced wave equation with fixed incident field. J. Math. Phys. 21, 758–764 (1980)zbMATHADSMathSciNetGoogle Scholar
  140. Weston, V.H.: Inverse problem for reduced wave equation with fixed incident field, part II. Submitted to J. Math. Phys.Google Scholar
  141. Hansen, E.W., Goodman, J.W.: Optical reconstruction from projections via circular harmonic expansion. Opt. Commun. 24, 268–275 (1978)ADSGoogle Scholar
  142. Hofer, J.: Optical reconstruction from projections via deconvolution. Opt. Commun. 29, 22–26 (1979)ADSGoogle Scholar
  143. Jordan, A.K., Ahn, S.: Inverse scattering theory and profile reconstruction. Proc. IEE 126, 945–950 (1979)MathSciNetGoogle Scholar
  144. Oldenburg, D.W., Samson, J.C.: Inversion of interferometric data from cylindrically symmetric, refractionless plasmas. J. Opt. Soc. Am. 69, 927–942 (1979)ADSGoogle Scholar
  145. Cohen, A., Cooney, J., Raviv, G., Wolfson, N.: Mathematical inversion of angular multiple light scattering data. Appl.Opt. 18, 2466–2469 (1979)ADSGoogle Scholar
  146. Shaw, G.E.: Inversion of optical scattering and spectral extinction measurements to recover aerosol size spectra. Appl. Opt. 18, 988–993 (1979)ADSGoogle Scholar
  147. Walters, P.T.: Practical Applications of inverting spectral turbidity data to provide aerosol size distributions. Appl. Opt. 19, 2353–2365 (1980)ADSGoogle Scholar
  148. Farina, J.D., Narducci, L.M., Collett, E.: Generation of highly directional beams from a globally incoherent source. Opt. Commun. 32, 203–208 (1980)ADSGoogle Scholar
  149. Levine, R.D.: An information theoretical approach to inversion problems. J. Phys. A13, 91–108 (1980)zbMATHADSMathSciNetGoogle Scholar
  150. Quattropani, A., Schwendimann, P., Baltes, H.P.: Sub-Poissonian statistics of an anharmonic oscillator in thermal equilibrium. Opt. Acta 27, 135–138 (1980)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

There are no affiliations available

Personalised recommendations