Lattice Models of High Velocity Dislocation Motion

  • N. Flytzanis
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 8)

Abstract

The high velocity motion of a screw dislocation is critically affected by the discreteness of the medium. The motion is accompanied by the emission of sound waves following the defect as a wake. The dynamic Peierls stress s, required to maintain the dislocation in uniform motion is a structured function of velocity for v≤0.5c but increases monotonically from v≈0.5c up to a critical v≈0.9c. The external stress needed depends very strongly on the interatomic force law and can correspond to a strain as low as 10−5 for a straight screw dislocation with a piecewise linear force law. The interaction of the dislocation with phonons is strongly non-linear for phonons with phase velocity equal to the dislocation velocity. They can form a phonon-dislocation complex moving with no external stress.

Keywords

Anisotropy Attenuation Soliton Coherence Convolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.T. Read Jr., Dislocations in Crystals (McGraw-Hill, New York, 1953 ).MATHGoogle Scholar
  2. 2.
    W.G. Johnston and J.J. Gilman, J. Appl. Phys. 30, 129 (1959).CrossRefADSGoogle Scholar
  3. 3.
    A.A. Maradudin, E.W. Montroll and G.H. Weiss, Solid State Physics Supplement 3, Theory of Lattice Dynamics in the Harmonic Approximation (Academic press, New York 1963).Google Scholar
  4. 4.
    Z.S. Basinski, M.S. Duesbery and R. Taylor, Phil. Mag. 21, 1201 (1970).CrossRefADSGoogle Scholar
  5. 5.
    V. Vitek, R.C. Perrin and D.K. Bowen, Phil. Mag. 21, 1049 (1970).CrossRefADSGoogle Scholar
  6. 6.
    J.W. Christian and V. Vitek, Rep. Prog. Phys. 33, 307 (1970).CrossRefADSGoogle Scholar
  7. 7.
    E. Yu. Gutmanans, E.M. Nadgornyi and A.V. Stepanov, Soviet Phys. Solid State 11, 3081 (1970).Google Scholar
  8. 8.
    H. Araki and T. Ninomiya, J. Phys. Soc. Japan 41, 1684 (1976).CrossRefADSGoogle Scholar
  9. 9.
    R.B. Schwartz and J.W. Michell, Phys. Rev. B9, 3292 (1974).CrossRefADSGoogle Scholar
  10. 10.
    K.M. Jassby and T. Vreeland, Jr., Acta Met. 20, 611 (1972).CrossRefGoogle Scholar
  11. 11.
    A.V. Granato and K. Lucke, J. Appl. Phys. 27, 583 (1956).CrossRefMATHADSGoogle Scholar
  12. 12.
    A. Hikata, R.A. Johnson and C. Elbaum Phys. Rev. Letters 24, 215 (1970).CrossRefADSGoogle Scholar
  13. 13.
    W.S. Farren and G.I. Taylor, Proc. Roy. Soc. 107, 422 (1925).CrossRefADSGoogle Scholar
  14. 14.
    F.R.N. Nabarro, Theory of Crystal Dislocations (Clarendon Press, Oxford, 1964).Google Scholar
  15. 15.
    W. Atkinson and N. Cabrera, Phys. Rev. 138A, 763 (1965).CrossRefADSGoogle Scholar
  16. 16.
    V. Celli, and N. Flytzanis, J. Appl. Phys. 41, 443 (1970)CrossRefGoogle Scholar
  17. 17.
    S. Ishioka, J. Phys. Soc. Japan, 30, 232 (1971).CrossRefGoogle Scholar
  18. 18.
    A.A. Maradudin, J. Phys. Chem. Solids 9, 1 (1958).CrossRefGoogle Scholar
  19. 19.
    V. Celli, N. Flytzanis and S. Crowley, J. Phys. Chem. Solids 37, 1125 (1976).CrossRefADSGoogle Scholar
  20. 20.
    Y.Y. Earmme and J.H. Weiner, Phys. Rev. Lett. 31, 1055 (1973).CrossRefADSGoogle Scholar
  21. 21.
    S. Ishioka J. Phys. Soc. Japan, 34 462 (1973).CrossRefGoogle Scholar
  22. 22.
    Y.Y. Earmme and J.H. Weiner, J. Appl. Phys. 45, 603 (1974).CrossRefADSGoogle Scholar
  23. 23.
    J.H. Weiner and M. Pear, Phil. Mag. 31, 1055 (1975).Google Scholar
  24. 24.
    S. Weertman, Symp. Math. Theory Dislocation. American Society of Mechanical Engineers. Northwestern University (1969).Google Scholar
  25. 25.
    N. Flytzanis, S. Crowley, and V. Celli, J. Phys. Chem. Solids, 38, 539 (1976).CrossRefGoogle Scholar
  26. 26.
    N. Flytzanis, S. Crowley and V. Celli, Phys. Rev. Lett. 39, 891 (1977).CrossRefADSGoogle Scholar
  27. 27.
    S. Crowley, N. Flytzanis and V. Celli, J. Phys. Chem. Solids, to be published.Google Scholar
  28. 28.
    S. Ishioka, J. Phys. Chem. Solids 36, 427 (1935).CrossRefGoogle Scholar
  29. 29.
    S. Boffi, G. Caglioti, G. Rizzi, and F. Rossitto, J. Appl. Phys., 45 3220 (1974).CrossRefADSGoogle Scholar
  30. 30.
    A.J. Foreman, M.A. Jaswon, and J.K. Wood, Proc. Phys. Soc. (London) A64, 156 (1951).CrossRefADSGoogle Scholar
  31. 31.
    A.H. Cottrell, Dislocations and Plastic Flow in Crystals (Oxford University Press, New York 1953) o. 64.Google Scholar
  32. 32.
    R. Hobart, Jour. Appl. Phys., 36, 1944 (1965).CrossRefADSGoogle Scholar
  33. 33.
    V.L. Indenbom, Soviet Phys. - Cryst. 3, 193 (1958).Google Scholar
  34. 34.
    W.T.O. Sanders, Phys. Rev., 128, 1540 (1962).CrossRefADSGoogle Scholar
  35. 35.
    S. Ishioka, J. Phys. Soc. Japan, 36, 187 (1974).CrossRefGoogle Scholar
  36. 36.
    T. Kurosawa, J. Phys. Soc. Japan 13 153 (1958).CrossRefGoogle Scholar
  37. 37.
    J.D. Eshelby, Proc. Roy. Soc., A197, 369 (1949).Google Scholar
  38. 38.
    J.H. Weiner, J. Appl. Phys. 29, 1305 (1958).CrossRefADSGoogle Scholar
  39. 39.
    W.P. Mason, J. Appl. Phys. 35, 2779 (1964).CrossRefADSGoogle Scholar
  40. 40.
    G. Leibfried, Zs. Phys. 127, 344 (1950).CrossRefMATHADSMathSciNetGoogle Scholar
  41. 41.
    J. Lothe, J. Appl. Phys. 33, 2116 (1962).CrossRefADSGoogle Scholar
  42. 42.
    T. Ninomiya, J. Phys. Soc. Japan, 25, 830 (1968).CrossRefGoogle Scholar
  43. 43.
    V.I. Al’shitz and V.L. Indenbcm Soy. Phys. Uso. 18, 1 (1975).CrossRefADSGoogle Scholar
  44. 44.
    A.D. Brailsford, J. Appl. Phys. 43, 1380 (1972).CrossRefADSGoogle Scholar
  45. 45.
    V.I. Al’shitz, A.G. Malshukov, ZETP 63, 1849 (1972).Google Scholar
  46. 46.
    N. Flytzanis and V. Celli, J. Appl. Phys. 43 3301 (1972).CrossRefADSGoogle Scholar
  47. 47.
    S. Crowley, N. Flytzanis and V. Celli, submitted to J. Phys. Chem. Solids.Google Scholar
  48. 48.
    J.D. Eshelby, Proc. Phys.Soc. London A62, 307 (1949).ADSGoogle Scholar
  49. 49.
    E.W. Hart, Phys. Rev. 98 1775 (1955).CrossRefADSGoogle Scholar
  50. 50.
    V.I. Al’shitz, V.L. Indenbom and A.A. Shtol’berg JETP, 33, 1240 (1971).ADSGoogle Scholar
  51. 51.
    A. Kochendorfer, A. Seeger and H. Donth Zeits. Phys., 127, 533 (1950); 130, 321 (1951); 134, 173 (1953).Google Scholar
  52. 52.
    A.C. Scott, Am. Journ. Phys. 37, 52 (1969).CrossRefADSGoogle Scholar
  53. 53.
    Y.Y. Earmme and J.H. Weiner, Phys. Rev. Lett. 33, 1550 (1974).CrossRefADSGoogle Scholar
  54. 54.
    W.G. Hoover, N.E. Hoover and W.C. Moss, Phys. Lett. 63A, 324 (1977).CrossRefGoogle Scholar
  55. 55.
    J.H. Weiner, A. Hikata and C. Elbaum, Phys. Rev. 13B, 531 (1976).CrossRefADSGoogle Scholar
  56. 56.
    N. Flytzanis and V. Celli, J. Appl. Phys. 45, 5176 (1974).CrossRefADSGoogle Scholar
  57. 57.
    A.V. Granato, Phys. Rev. Lett. 27, 660 (1971).CrossRefADSGoogle Scholar
  58. 58.
    A. Hikata, and C. Elbaum, Phys. Rev. B9 4529 (1974).CrossRefADSGoogle Scholar
  59. 59.
    J. Takamura and T. Morimoto, J. Phys. Soc. J.pan 18, Sump’. 1, 28 (1963).Google Scholar
  60. 60.
    A. Ookawa and K. Yazu, J. Phys. Soc. J.pan 18, Suppl. 1, 36 (1963).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • N. Flytzanis
    • 1
  1. 1.University of VirginiaCharlottesvilleUSA

Personalised recommendations