Control of Energy Flux in Biological Systems

  • D. F. Wilson
  • M. Erecinska
  • I. Sussman
Conference paper
Part of the Colloquium der Gesellschaft für Biologische Chemie book series (MOSBACH, volume 29)

Abstract

Cells, in order to survive and grow, must maintain precise dynamic balance between the pathways which utilize ATP (biosynthetic pathways, ion transport, etc.) and those which produce ATP (glycolysis, mitochondrial oxidative phosphorylation). In higher organisms most of the ATP is supplied by mitochondrial oxidative phosphorylation. Complete aerobic combustion of glucose to carbon dioxide and water yields approximately 17 times as much useful energy in the form of ATP as can be obtained from the same glucose by anaerobic glycolysis alone. The overwhelming importance of mitochondrial oxidative phosphorylation in man becomes apparent when one realizes that a 69 kg man walking at 4 km/h in loose snow and carrying a 20 kg load is utilizing approximately 0.5 kg of ATP/minute! During a normal working day the ATP utilization of the same man may range from approximately 25 g ATP/min to values in excess of 0.6 kg ATP/min. This high metabolic flux and large dynamic range of control assures mitochondrial oxidative phosphorylation of a dominant role in cellular homeostasis.

Keywords

Hydrolysis Glycerol Chrome Lactate Respiration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, D.E.: In: Metabolic Pathways. Vogel, H.J. (ed.). New York: Academic Press, 1971, Vol. V, pp. 1–21Google Scholar
  2. Beis, I., Newsholme, E.A.: Biochem. J. 152, 23–32 (1975)PubMedGoogle Scholar
  3. Chance, B., Hess, B.: Science 129, 700–708 (1959)PubMedCrossRefGoogle Scholar
  4. Crabtree, H.G.: Biochem. J. 23, 536–545 (1929)PubMedGoogle Scholar
  5. Elbers, R., Heldt, H.W., Schmucker, P., Soboll, S., Wiese, H.: Hoppe-Seyler’s Z. Physiol. Chem. 355, 378–393 (1974)PubMedCrossRefGoogle Scholar
  6. Erecinska, M., Kula, T., Wilson, D.F.: FEBS Lett. 87, 139–144 (1978a)PubMedCrossRefGoogle Scholar
  7. Erecinska, M., Stubbs, M., Miyata, Y., Ditre, C.M. Wilson, D.F.: Biochem. Biophys. Acta 462, 20–35 (1977)PubMedCrossRefGoogle Scholar
  8. Erecinska, M., Veech, R.L., Wilson, D.F.: Arch. Biochem. Biophys. 160, 412–421 (1974)PubMedCrossRefGoogle Scholar
  9. Erecinska, M., Wilson, D.F., Nishiki, K.: Am. J. Physiol. 234, c82 - c89 (1978b)PubMedGoogle Scholar
  10. Johnson, M.J.: Science 94, 200–202 (1941)PubMedCrossRefGoogle Scholar
  11. Lund, P., Cornell, N.W., Krebs, H.A.: Biochem. J. 152, 593–599 (1975)PubMedGoogle Scholar
  12. Lynen, F.: Justus Liebigs Ann. Chem. 546, 120–141 (1941)CrossRefGoogle Scholar
  13. Owen, C.S., Wilson, D.F.: Arch. Biochem. Biophys. 161, 581–591 (1974)PubMedCrossRefGoogle Scholar
  14. Siess, E.A., Wieland, O.H.: Biochem. J. 156, 91–102 (1976)PubMedGoogle Scholar
  15. Warburg, O.: Science 123, 309–314 (1956)PubMedCrossRefGoogle Scholar
  16. Wilson, D.F., Erecinska, M., Drown, C., Silver, I.A.: Am. J. Physiol. 233, c135–140 (1977b)PubMedGoogle Scholar
  17. Wilson, D.F., Owen, C.S., Holian, A.: Arch. Biochem. Biophys. 182, 749–762 (1977a)PubMedCrossRefGoogle Scholar
  18. Wilson, D.F., Stubbs, M., Oshino, N., Erecinska, M.: Biochemistry 13, 5305–5311 (1974a)PubMedCrossRefGoogle Scholar
  19. Wilson, D.F., Stubbs, M., Veech, R.L., Erecinska, M., Krebs, H.A.: Biochem. J. 140, 57–64 (1974b)PubMedGoogle Scholar
  20. Zuurendonk, P.F., Tager, J.M.: Biochem. Biophys. Acta 333, 393–399 (1974)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • D. F. Wilson
  • M. Erecinska
  • I. Sussman

There are no affiliations available

Personalised recommendations