Advertisement

IETS with Applications to Biology and Surface Physics

  • R. V. Coleman
  • James M. Clark
  • C. S. Korman
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 4)

Abstract

Applications of inelastic electron tunneling spectroscopy to the study of biological molecules will be reviewed. Experiments include work on amino acids, purine and pyridine bases, nucleosides, nucleotides, DNA, RNA, proteins and other selected compounds. Detailed studies of mononucleotides using a series of derivatives with selected bases have established that the tunneling spectra resolve small differences in chemical structure as well as clearly distinguishing different bases. The technique has also been extended to polynucleotides and may be of help in sequence studies. Applications include studies on ultraviolet radiation damage and a series of results on bases, mononucleotides, and polynucleotides will be prepared. Results and problems associated with applying the tunneling technique to the full DNA molecule and other large molecules will also be analyzed. Applications to other relevant materials such as long chain fatty acids will also be discussed

Keywords

Ring Mode Alumina Substrate Orotic Acid Junction Resistance Tunneling Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Lambe, R.C. Jaklevic: Phys. Rev. 165, 821 (1968)CrossRefGoogle Scholar
  2. 2.
    Michael G. Simonsen, R.V. Coleman, Paul K. Hansma: Journ. of Chem. Phys. 61, 3789 (1974): Michael G. Simonsen, R.V. Coleman: Phys. Rev. B8, 5875 (1973)CrossRefGoogle Scholar
  3. 3.
    B.F. Lewis, M. Mosesman, W.H. Weinberg: Surf. Sci. 41, 142 (1974)CrossRefGoogle Scholar
  4. 4.
    J. Klein, A. Leger, M. Belin, D. DeFourneau, M.J.L. Sangster: Phys. Rev. B7, 2336 (1973)CrossRefGoogle Scholar
  5. 5.
    Paul K. Hansma, R.V. Coleman: Science 184, 1369 (1974)Google Scholar
  6. 6.
    James M. Clark, R.V. Coleman: Proceedings of the National Academy of Sciences 73, 1598 (1976)CrossRefGoogle Scholar
  7. 7.
    John Kirtley, D.J. Scalapino, P.K. Hansma: Phys. Rev. B14, 3177 (1976)CrossRefGoogle Scholar
  8. 8.
    R.C. Jaklevic, J. Lambe in “Tunneling Phenomena in Solids”, edited by E. Burstein and S. Lundqvist (Plenum, New York, 1969), Chap. 18, p. 243Google Scholar
  9. 9.
    Michael G. Simonsen, R.V. Coleman: Nature 244, 218 (1973)CrossRefGoogle Scholar
  10. 10.
    C.S. Korman, R.V. Coleman: Phys. Rev. B15, 1877 (1977)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • R. V. Coleman
    • 1
  • James M. Clark
    • 1
  • C. S. Korman
    • 1
  1. 1.Department of PhysicsUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations