Skip to main content

Dynamic Aspects of Carrier-Mediated Cation Transport Through Membranes

  • Chapter
Book cover Chemical Relaxation in Molecular Biology

Part of the book series: Molecular Biology Biochemistry and Biophysics ((MOLECULAR,volume 24))

Abstract

Many essential functions of biological membrane systems (e.g. nerve and muscle membranes) are coupled to their permeabilities to cations. The cation permeabilities of biological membranes are controlled by specific permeation proteins which often confer a remarkable alkali ion specificity to the membrane in which they are situated (Fig. 1a). It is important to note here that the maximum permeability is not obtained with the smallest or the largest alkali ion. In Figure 1c a similar specificity of the enzymic activity of pyruvate carboxylase for alkali ions is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AHRENS, M.-L.: Proton transfer kinetics of 51-deoxypyridoxal. Biochim. Biophys. Acta 320, 86–96 (1973)

    Article  PubMed  CAS  Google Scholar 

  • BAMBERG, E., BENZ, R., LAEUGER, P., STARK, G.: Ionentransport durch biologische Membranen. Chiuz 8, 33–43 (1974)

    CAS  Google Scholar 

  • BURGERMEISTER, W., WIELAND, Th., WINKLER, R.: Antamanide. Dynamics of metal-complex formation. Eur. J. Biochem. 44, 305–310 (1974)

    Article  PubMed  CAS  Google Scholar 

  • CHOCK, P.B.: Relaxation study of complex formation between monovalent cations and cyclic polyethers. Proc. Nat. Acad. Sci. (Wash.) 69, 1939–1942 (1972)

    Article  CAS  Google Scholar 

  • DIEBLER, H., EIGEN, M., ILGENFRITZ, G., MAAß, G., WINKLER, R.: Kinetics and mechanism of reactions of main group metal ions with biological carriers. Pure Appl. Chem. 20, 93–115 (1969)

    CAS  Google Scholar 

  • DIETRICH, B., LEHN, J.-M., SAUVAGE, J.-P.: Kryptate: makrocycli- sche Metallkomplexe. Chiuz 7, 120–128 (1973)

    CAS  Google Scholar 

  • EIGEN, M., DE MAEYER, L.: Theoretical basis of relaxation spectrometry. In: Techniques of Chemistry. WEISSBERGER, A. (ed.); Vol. VI, Part 2; HAMMES, G.G. (ed.); pp. 63–146. New York: Wiley 1973

    Google Scholar 

  • EIGEN, M., WINKLER, R.: Alkali-ion carriers: dynamics and selectivity. In: The Neurosciences, Second Study Program. SCHMITT, F.O. (ed.); pp 685–695. New York: Rockefeller Univ. Press 1970

    Google Scholar 

  • FUNCK, Th., EGGERS, F., GRELL, E.: Kinetik und Mechanismus der selektiven Bindung von Ionen durch Dyclodepsipeptid-Antibiotika. Chimia 26, 637–641 (1972)

    CAS  Google Scholar 

  • GRELL, E., EGGERS, F., FUNCK, Th.: Konformationsanalyse und Kinetik der Konformationsänderungen von membranaktiven Antibiotika. Chimia 26, 632–637 (1972a)

    CAS  Google Scholar 

  • GRELL, E., FUNCK, Th.: Dynamic properties and membrane activity of ion specific antibiotics. J. Supramol. Structure 307–335 (1973)

    Google Scholar 

  • GRELL, E., FUNCK, Th., EGGERS, F.: Dynamic properties and membrane activity of ion specific antibiotics. In: Molecular Mechanism of Antibiotic Action on Protein Biosynthesis and Membranes. MUNOZ, E., GARCIA-FERRANDIZ, F., VASQUEZ, D. (eds.); pp. 645–685. Amsterdam: Elseyier 1972b

    Google Scholar 

  • GRELL, E., FUNCK, Th., EGGERS, F.: Structure and dynamic properties of ion-specific antibiotics. In: Membranes. EISENMAN, G. (ed.); Vol. III, pp. 1–126. New York: Dekker 1975

    Google Scholar 

  • GRELL, E., FUNCK, Th., SAUTER, H.P.: Carbon-13 nuclear-magnetic- resonance and infrared-absorption spectroscopy of valinomycin and its alkali-ion complexes. Europ. J. Biochem. 34, 415–424 (1973)

    Article  PubMed  CAS  Google Scholar 

  • GRELL, E., OBERBAEUMER, I., RUF, H., ZINGSHEIM, H.P.: Elementary steps and dynamic aspects of carrier-mediated cation transport through membranes: the streptogramin antibiotics (group B). In: Biochemistry of Membrane Transport. SEMENZA, G., CARAFOLI, E. (eds.); pp. 147–178. Berlin-Heidelberg-New York: Springer 1977

    Chapter  Google Scholar 

  • HAGIWARA, S., EATON, D.C., STUART, A.E., ROSENTHAL, N.P.: Cation selectivity of the resting membrane of squid axon. J. Membrane Biol. 1, 373–384 (1972)

    Article  Google Scholar 

  • HAGIWARA, S., TOYAMA, K., HAYASHI, H.: Mechanisms of anion and cation permeations in the resting membrane of a barnacle muscle fiber. J. Gen. Physiol. 57, 408–434 (1971)

    Article  PubMed  CAS  Google Scholar 

  • HILLE, B.I Size of the selectivity filter in the K channel of frog nerve. Biophys. J. 12, 123a (1972)

    Google Scholar 

  • ISMAILOV, N.A.: Energy of solvation of individual ions in non-aqueous solutions (russian), Dokl. Akad. Nauk S.S.S.R. 149, 1364–1367 (1963)

    Google Scholar 

  • IVANOV, V.T., LAINE, I.A., ABDULAEV, N.D., SENYAVINA, L.B., POPOV, E.M., OVCHINNIKOV, Yu.A., SHEMYAKIN, M.M.: The physicochemical basis of the functioning of biological membranes: the 5 conformation of valinomycin and its K+ complex in solution. Biochem. Biophys. Res. Commun. 34, 803–811 (1969)

    Article  PubMed  CAS  Google Scholar 

  • LEHN, J.M., SAUVAGE, J.P.: Cation and cavity selectivities of alkali and alkaline-earth “cryptâtes”. Chem. Commun. 440–441 (1971)

    Google Scholar 

  • MAYERS, D.F., URRY, D.W.: Valinomycin-cation complex. Conformational energy aspects. J. Am. Chem. Soc. 94, 77–81 (1972)

    Article  PubMed  CAS  Google Scholar 

  • McCLURE, W.R., LARDY, H.A., KNEIFEL, H.: Rat liver pyruvate carboxylase: I. Preparation, properties and cation specificity. J. Biol. Chem. 246, 3569–3578 (1971)

    PubMed  CAS  Google Scholar 

  • MUELLER, P., RUDIN, D.O.: Development of K+ - Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics. Biochem. Biophys. Res. Commun. 26, 398–404 (1967)

    Article  PubMed  CAS  Google Scholar 

  • OBERBAEUMER, I.: Versuche zur Charakterisierung der Wechselwirkungen des Antibiotikums Virginiamycin S mit Lipid-Membranen. Diplomarbeit Göttingen, 1975

    Google Scholar 

  • OVCHINNIKOV, Yu.A., IVANOV, V.T., SHKROB, A.M.: Membrane-active complexones. B.B.A. Library, Vol. 12. Amsterdam: Elsevier 1974

    Google Scholar 

  • PEDERSEN, C.J.: Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89, 7017–7036 (1967)

    Article  CAS  Google Scholar 

  • PINKERTON, M., STEINRAUF, L.K., DAWKINS, P.: The molecular structure and some transport properties of valinomycin. Biochem. Biophys. Res. Commun. 35, 512–518 (1969)

    Article  PubMed  CAS  Google Scholar 

  • SCHUSTER, P., TORTSCHANOFF, K., WINKLER, H.: Protoneniibertraguns- reaktionen zweibasischer Säuren in wässriger Lösung: 3-Hydroxy- pyridin. Z. Naturforsch. 31C, 219–224 (1976)

    CAS  Google Scholar 

  • SCHUSTER, P., WOLSCHANN, K.P., TORTSCHANOFF, K.: Dynamics of proton transfer. This volume, pp. 107–190. Berlin-Heidelberg- New York: Springer 1977

    Google Scholar 

  • SHEMYAKIN, M.M., OVCHINNIKOV, Yu.A., IVANOV, V.T., ANTONOV, V.K., VINOGRADOVA, E.I., SHKROB, A.M., MALENKOV, G.G., EVSTRATOV, A.V., LAINE, I.A., MELNIK, E.I., RYABOVA, I.D.: Cyclodepsipep- tides as chemical tools for studying ionic transport through membranes. J. Membrane Biol.1, 402–430 (1969)

    Article  Google Scholar 

  • STARK, G., KETTERER, B., BENZ, R., LAEUGER, P.: The rate constants of valinomycin-mediated ion transport through thin lipid membranes. Biophys. J. 11, 981–994 (1971)

    Article  PubMed  CAS  Google Scholar 

  • SZABO, G., EISENMAN, G., LAPRADE, R., CIANI, S.M., KRASNE, S.: Experimentally observed effects of carriers on the electrical properties of bilayer membranes-equilibiium domain. In: Membranes. EISENMAN, G. (ed.); Vol. II, pp. 179–328. New York: Dekker 1973

    Google Scholar 

  • VANDERHAEGHE, H., PARMENTIER, G.: The structure of factor S of staphylomycin. J. Am. Chem. Soc. 82, 4414–4422 (1960)

    Article  Google Scholar 

  • WINKLER, R.: Kinetics and mechanism of alkali ion complex formation in solution.: In Structure and Bonding, Vol. X, pp. 1–24. Berlin-Heidelberg-New York: Springer 1972

    Chapter  Google Scholar 

  • ZUEST, Ch.U., FRUEH, P.U., SIMON, W.: Complex formation of macrotetrolide carrier antibiotics with cations studied by microcalor imetry and vapour pressure osmometry. Helv. Chim. Acta 56, 495–499 (1973)

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer-Verlag Berlin. Heidelberg

About this chapter

Cite this chapter

Grell, E., Oberbäumer, I. (1977). Dynamic Aspects of Carrier-Mediated Cation Transport Through Membranes. In: Pecht, I., Rigler, R. (eds) Chemical Relaxation in Molecular Biology. Molecular Biology Biochemistry and Biophysics, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81117-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81117-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81119-7

  • Online ISBN: 978-3-642-81117-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics