Skip to main content

Ergodic Properties of Population I: The One Sex Model

  • Chapter
Book cover Mathematical Demography

Part of the book series: Biomathematics ((BIOMATHEMATICS,volume 6))

  • 828 Accesses

Abstract

The requirements Parlett introduces for stability of non-negative matrices, irreducibility and primitivity, have an intuitive base. Irreducibility translates as the restriction that the projection matrix be for a single population, as in the continuous form of the renewal equation. (Matrix techniques for extracting stable roots and vectors do not apply to non-interacting populations; nor in general would such populations have the same roots.)

From Theoretical Population Biology 1. Excerpts are from pages 191–202.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Dulmage, A. L. and Mendelsohn, N. S. 1964. Gaps in the exponent set of primitive matrices, Illinois J. Math. 8, 642–656.

    MATH  MathSciNet  Google Scholar 

  • Heap, B. R. AND Lynn, M. S. 1964. The index of primitivity of a non-negative matrix, Numer. Math. 6, 120–144.

    Article  MATH  MathSciNet  Google Scholar 

  • Heap, B. R. AND Lynn, M. S. 1964. A Graph-theoretic algorithm for the solution of a linear diophantine problem of Frobenius, Numer. Math. 6, 346–354.

    Article  MATH  MathSciNet  Google Scholar 

  • Heap, B. R. AND Lynn, M. S. 1965. On a linear diophantine problem of Frobenius: An improved algorithm, Numer. Math. 7, 226–231.

    Article  MATH  MathSciNet  Google Scholar 

  • Keyfitz, N. 1968. “Introduction to the Mathematics of Population,” Addison-Wesley Publ. Co., Reading, Mass.

    Google Scholar 

  • Mcfarland, D. D. 1969. On the theory of stable populations. A new and elementary proof of the theorems under weaker assumptions, Demography 6, 303–322.

    Article  Google Scholar 

  • Rosenblatt, D. 1957. On the graphs and asymptotic forms of finite Boolean relation matrices and stochastic matrices, Naval Res. Logist. Quart. 4, 151–167.

    Article  MathSciNet  Google Scholar 

  • SYKES, Z. M. 1969. On discrete stable population theory, Biometrics 25.

    Google Scholar 

  • Marcus, M. AND Minc, H. 1964. “A Survey of Matrix Theory and Matrix Inequalities,” Allyn and Bacon, Inc., Boston, Mass.

    MATH  Google Scholar 

  • Gartmacher, F. R. 1959. “Theory of Matrices,” Vol. 2, Chelsea, New York.

    Google Scholar 

  • Karlin, —. 1966. “A First Course in Stochastic Processes,” Academic Press, Inc., New York.

    Google Scholar 

  • Lopez, A. 1961. “Problems in Stable Population Theory,” Office of Population Research, Princeton, N. J.

    Google Scholar 

  • Berge, C. 1962. “The Theory of Graphs,” Methuen, London.

    MATH  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Parlett, B. (1977). Ergodic Properties of Population I: The One Sex Model. In: Mathematical Demography. Biomathematics, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81046-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81046-6_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81048-0

  • Online ISBN: 978-3-642-81046-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics