The Population Consequences of Life History Phenomena

  • Lamont C. Cole
Part of the Biomathematics book series (BIOMATHEMATICS, volume 6)


The part of Cole’s article included here outlines the relationship of Thompson’s work (1931, paper 20 above) to stable population theory. Omitted sections discuss the relationships between the rate of increase, numbers and spacing of offspring, and age structure, with their implications for species survival.


Litter Size Female Offspring Intrinsic Rate Natural Increase Life History Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

List of Literature

  1. Archibold, R, C. 1918. A Fibonacci series. Amer. math. Monthly, 25: 235–238.Google Scholar
  2. Birch, L. C. 1948. The intrinsic rate of natural increase of an insect population. J. Anim. Ecol., 17: 15–26.CrossRefGoogle Scholar
  3. Chapman, R. N. 1938. Animal Ecology. McGraw-Hill, New York.Google Scholar
  4. Dublin, L. I., and A. J. Lotka. 1925. On the true rate of natural increase as exemplified by the population of the United States, 1920. J. Amer. statist. Ass., 20:305–339.CrossRefGoogle Scholar
  5. Dunkel, O. 1925. difference eSolutions of a probabilityquation. Amer. math. Monthly, 32: 354–370CrossRefzbMATHMathSciNetGoogle Scholar
  6. Evans, F. C., and F. E. Smith. 1952. The intrinsic rate of natural increase for the human louse, Pediculus humanus L. Amer. Nat., 86: 299–310.CrossRefGoogle Scholar
  7. Fibonacci, L. (1857). Liber Abbaci di Leonardo Pisano publicati da Baldasarre Boncompagni. Tipografia delle Scienze mathematiche e fisiche, Roma. Google Scholar
  8. Fisher, R. A.1930. The Genetical Theory of Natural Selection. Oxford Univ. Press, London.zbMATHGoogle Scholar
  9. Jordan, C. 1950. Calculus of Finite Differences, 2nd ed. Chelsea, New York.zbMATHGoogle Scholar
  10. Kuczynski, R. R.1932. Fertility and Reproduction. Falcon Press, New York.zbMATHGoogle Scholar
  11. Leslie, P. H., and R. M. Ranson. 1940. The mortality, fertility, and rate of natural increase of the vole (Microtus agrestis) as observed in the laboratory. J. Anim. Ecol., 9: 27–52.CrossRefGoogle Scholar
  12. —, and T. PARK. 1949. The intrinsic rate of natural increase of Tribolium castaneum Herbst. Ecology, 30: 469–477.CrossRefGoogle Scholar
  13. Linnaeus, C. 1743. Oratio de telluris habitabilis. In Amoenitates Academicae seu Dissertationes Variae Editio tertia curante J. C. D. Schre-bero, 1787, Vol. 2:430–457. J. J. Palm, Erlangae.Google Scholar
  14. Lotka, A. J. 1907a. Relation between birth rates and death rates. Science, 26: 21–22.CrossRefGoogle Scholar
  15. —. 1907b. Studies on the mode of growth of material aggregates. Amer. J. Sci., 24: 119–216.CrossRefGoogle Scholar
  16. Malthus, T. R. 1798. An Essay on the Principle of Population ds it Affects the Future Improvement of Society, with Remarks on the Speculations of Mr. Godwin, M. Condorcet, and Other Writers. Printed for J. Johnson in St. Paul’s Churchyard, London.Google Scholar
  17. Mendes, L. O. 1949. Determinagao do potencial biotico da “broca do cafe”—Hypothenemus hampei (Ferr.)—e consideracoes s6bre o crescimento de sua populacao. Ann. A cad. bras. Sci., 21:275–290.Google Scholar
  18. Milne-thompson, L. M. 1933. The Calculus of Finite Differences. Macmillan, London.Google Scholar
  19. Molisch, H. 1938. The Longevity of Plants. E. H. Fulling, Lancaster Press, Lancaster, Pa.Google Scholar
  20. Pierce, J. C. 1951. The Fibonacci series. Sci. Monthly, 73:224–228.Google Scholar
  21. Rhodes, E. C. 1940. Population mathematics. J. R. statist. Soc., 103: 61–89, 218–245, 362–387.CrossRefMathSciNetGoogle Scholar
  22. Sadler, M. T. 1830. The Law of Population: A Treatise, in Six Books; in Disproof of the Super-fecundity of Human Beings, and Developing the Real Principle of their Increase. Murray, London.Google Scholar
  23. Sharpe, F. R., and A. J. Lotka. 1911. A problem in age distribution. Phil. Mag., 21: 435–438.Google Scholar
  24. Thompson, D’Arcy W. 1942. On Growth and Form, new ed. Cambridge Univ. Press, Cambridge.zbMATHGoogle Scholar
  25. Thompson, W. R. 1931. On the reproduction of organisms with overlapping generations. Bull. ent. Res., 22: 147–172.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1977

Authors and Affiliations

  • Lamont C. Cole

There are no affiliations available

Personalised recommendations