The Structure and Function of Salt Glands

  • W. W. Thomson
Part of the Ecological Studies book series (ECOLSTUD, volume 15)


Many halophytic plants have epidermal glands on their leaves and stems which secrete salt (Metcalfe and Chalk, 1950). These glands have been considered efficient devices for the secretion of excess salt which accumulates in the tissue (Haberlandt, 1914; Helder, 1956; Scholander, 1968; Scholander et al., 1962; 1965; 1966). Helder (1956) indicated that salt glands were common in the families Plumbaginaceae and Frankeniaceae but only occurred in a few scattered species outside these families. However, many other plants are known to have trichomes, glands, and glandular structures, but in many instances further investigations are needed to determine their secretion products. Many of these may possibly be salt glands (i.e. specialized structures which secrete minerals and ions) and an understanding of the general distribution and significance of salt glands must await further information.


Basal Cell Leaf Disc Secretory Cell Gland Cell Salt Gland 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arisz, W.H.: Significance of the symplasm theory for transport across the root. Protoplasma 46, 5–62 (1956).CrossRefGoogle Scholar
  2. Arisz, W.H., Camphuis, I. J., Heikens, H., van Tooren, A. J.: The secretion of the salt glands of Limonium latifolium ktze. Acta Botan. Neerl. 4, 322–338 (1955).Google Scholar
  3. Atkinson, M.R., Findlay, C.P., Hope, A. B., Pitman, M.G., Saddler, H.D.W., West, K.R.: Salt regulation in the mangrovesRhizophora mucronata Lam. and Aegialitis annulata R. Br. Australian J. Biol. Sci. 20, 589–599 (1967).Google Scholar
  4. Berridge, M. J., Gupta, B.L.: Fine-structural changes in relation to ion and water transport in the rectal papillae of the blowfly Calliphora. J. Cell Sci. 2, 89–112 (1967).PubMedGoogle Scholar
  5. Berridge, M. J., Gupta, B.L.: Fine-structural localization of adenosine triphosphatase in the rectum of Calliphora. J. Cell Sci. 3, 17–32 (1968)PubMedGoogle Scholar
  6. Berridge, MJ., Oschman, J. L.: A structural basis for fluid secretion by Malpighian tubules. Tissue and Cell. 1, 247–272 (1969).PubMedCrossRefGoogle Scholar
  7. Berry, W.L.: Characteristics of salts secreted by Tamarix aphylla, Am. J. Botany 57, 1226–1230 (1970).CrossRefGoogle Scholar
  8. Berry, W.L., Thomson, W.W.: Composition of salt secreted by salt glands of Tamarix aphylla. Can. J. Botany 45, 1774–1775 (1967).CrossRefGoogle Scholar
  9. Black, R.F.: Leaf anatomy of Australian members of the genus Atriplex. I. Atriplex vesicaria Heward and A.nummularia Lindl. Australian J. Botan. 2, 259–286 (1954).Google Scholar
  10. Bonnett, H.T., Jr.: The root endodermis: fine structure and function. J. Cell Biol. 37, 109–205 (1968).CrossRefGoogle Scholar
  11. Campbell, C. J., Strong, J. E.: Salt gland anatomy in Tamarix pentandra (Tamaricaceae). Southwest Nat. 9, 232–238 (1964).CrossRefGoogle Scholar
  12. Copeland, E.: Salt transport organelle in Anemia salenis. Science 151, 470–471 (1966).PubMedCrossRefGoogle Scholar
  13. Diamond, J. M., Bossert, W.H.: Standing-gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. J. Gen. Physiol. 50, 2061–2083 (1967).PubMedCrossRefGoogle Scholar
  14. Diamond, J. M., Bossert, W.H.: Functional consequences of ultrastructural geometry in “backwards” fluid-transporting epithelia. J. Cell Biol. 37, 694–702 (1968).PubMedCrossRefGoogle Scholar
  15. Diamond, J. M., Tormey, J. McD.: Role of long extracellular channels in fluid transport across epithelia. Nature 210, 817–820 (1966a).PubMedCrossRefGoogle Scholar
  16. Diamond, J. M., Tormey, J. McD.: Studies on the structural basis of water transport across epithelial membranes. Federation Proc. 25, 1458–1463 (1966b).Google Scholar
  17. Ernst, S. A., Philpott, C.W.: Preservation of Na-K activated and Mg-activated adenosine triphosphatase activity of avian salt gland and telost gill with formaldehyde as fixative. J. Histochem. Cytochem. 18, 251–263 (1970).PubMedCrossRefGoogle Scholar
  18. Esau, K.: Plant Anatomy, 2nd ed. pp.767. New York-London-Sidney: John Wiley and Sons 1965.Google Scholar
  19. Findlay, N., Mercer, F. V.: Nectar Production in Ahutilon. I. Movement of Nectar through the Cuticle. J. Biol. Sci. 24, 647–56 (1971a).Google Scholar
  20. Findlay, N., Mercer, F. V.: Nectar Production in Abut Hon. II. Submicroscopic Structure of the Nectary. J. Biol. Sci. 24, 657–64 (1971b).Google Scholar
  21. Fisher, J., Hodges, T.K.: Monovalent ion stimulated adenosine triphosphatase from oat roots. Plant Physiol. 44, 385–395 (1969).PubMedCrossRefGoogle Scholar
  22. Gunning, B.E.S., Pate, J. S.: “Transfer cells”—Plant cells with wall ingrowths, specialized in relation to short transport of solutes—their occurrence, structure, and development. Protoplasma 68, 107–133 (1969a).CrossRefGoogle Scholar
  23. Gunning, B.E.S, Pate, J. S.: Vascular transfer cells in angiosperm leaves a taxonomic and morphological survey. Protoplasma 68, 135–156 (1969b).CrossRefGoogle Scholar
  24. Haberlandt, G.: Physiological plant anatomy, 777 pp. London: MacMillan and Co., Ltd. 1914.Google Scholar
  25. Helder, R. J.: The loss of substances by cells and tissues (salt glands). In: Ruhland, W. (Ed.): Handbuch der Pflanzenphysiologie, Vol.2, pp.468–88. Berlin-Gottingen-Heidelberg: Springer 1956.Google Scholar
  26. Hill, A. E.: Ion and water transport in Limonium. I. Active transport by the leaf gland cells. Biochim. Biophys. Acta 135, 454–460 (1967a).PubMedCrossRefGoogle Scholar
  27. Hill, A. E.: Ion and water transport in Limonium. II. Short-circuit analysis. Biochim. Biophys. Acta 135, 461–465 (1967b).PubMedCrossRefGoogle Scholar
  28. Hill, A. E.: Ion and water transport in Limonium. III. Time constants of the transport system. Biochim. Biophys. Acta 196, 66–72 (1970a).PubMedCrossRefGoogle Scholar
  29. Hill, A. E.: Ion and water transport in Limonium. IV. Delay effects in the transport process. Biochim. Biophys. Acta 196, 73–79 (1970b).PubMedCrossRefGoogle Scholar
  30. Jennings, D.H.: Halophytes, succulence and sodium in plants—a unified theory. New Phytol. 67, 899–911 (1968).CrossRefGoogle Scholar
  31. Jensen, W.A.: Cell development during plant embryogenesis. Brookhaven Symp. Biol. 16, 179–202 (1963).Google Scholar
  32. Kaye, G.I., Wheeler, H.O., Whitlock, R.T., Lane, N.: Fluid transport in the rabbit gallbladder. Jour. Cell. Biol. 30, 237–268 (1966).CrossRefGoogle Scholar
  33. Kelley, C.: Wall projections in the sporophyte and gametophyte of Sphaerocarpus. J. Cell Biol. 41, 910–914 (1969).PubMedCrossRefGoogle Scholar
  34. Komnick, H.: Electronenmikroskopische Lokalisation von Na+ und CI- in Zellen und Geweben. Protoplasma 55, 414–418 (1967).CrossRefGoogle Scholar
  35. Kylin, A., Gee, R.: Adenosine triphosphatase activities in leaves of the mangrove Avicennia nitida Jacq. Plant Physiol. 45, 169–172 (1970).PubMedCrossRefGoogle Scholar
  36. Larkum, A.W.D., Hill, A. E.: Ion and water transport in Limonium. V. The ionic status of chloroplasts in the leaf of Limonium vulgare in relation to the activity of the salt glands. Biochim. Biophys. Acta 203, 133–138 (1970).PubMedCrossRefGoogle Scholar
  37. Levering, C. A., Thomson, W.W.: The ultrastructure of the salt gland of Spartina foliosa. Planta 97, 183–196 (1971).CrossRefGoogle Scholar
  38. Levering, C. A., Thomson, W.W.: Studies on the ultrastructure and mechanism of secretion of the salt gland of the grass Spartina. Proc. 30 th Electron Microscope Soc. of America, 222–223 (1972).Google Scholar
  39. Lüttge, U.: Funktion und Struktur pflanzlicher Drüsen. Die Naturwissenschaften 53, 96–103 (1966).CrossRefGoogle Scholar
  40. Lüttge, U.: Aktiver Transport (Kurzstreckentransport bei Pflanzen). Protoplasmatologia 8, 1–146 (1969).Google Scholar
  41. Lüttge, U.: Structure and function of plant glands. Ann. Rev. Plant Physiol. 22, 23–44 (1971).CrossRefGoogle Scholar
  42. Lüttge, U., Osmond, C.B.: Ion absorption in Atriplex leaf tissue. III. Site of metabolic control of light-dependent chloride secretion to epidermal bladders. Australian J. Biol. Sci. 23, 17–25 (1970).Google Scholar
  43. Lüttge, U., Pallaghy, C.K.: Light triggered transient changes of membrane potentials in green cells in relation to photosynthetic electron transport. Z. Pflanzenphysiol. 61, 58–67 (1969).Google Scholar
  44. Lüttge, U., Pallaghy, C.K., Osmond, C.B.: Coupling of ion transport in green cells of Atriplex spongiosa leaves to energy sources in the light and in the dark. J. Membrane Biol. 2, 17–30 (1970).CrossRefGoogle Scholar
  45. Macrobbie, E. A. C.: Fluxes and compartmentation in plant cells. Ann. Rev. Plant Physiol. 22, 75–96 (1971).CrossRefGoogle Scholar
  46. Metcalfe, C.R., Chalk, L.: Anatomy of the dicotyledons, Vol.I & II, 1500 p. Oxford: Clarendon Press 1950.Google Scholar
  47. Mozafar, A., Goodin, J.R.: Vesiculated hairs: A mechanism for salt tolerance in Atriplex halimus L. Plant Physiol. 45, 62–65 (1970).PubMedCrossRefGoogle Scholar
  48. Osmond, C.B., Lüttge, U., West, K.R., Pallaghy, C.K., Shacher-Hill, B.: Ion absorption in Atriplex leaf tissue. II. Secretion of ions to epidermal bladders. Australian J. Biol. Sci. 22, 797–814 (1969).Google Scholar
  49. Pollack, G., Waisel, Y.: Salt secretion in Aeluropus litoralis (Willd.) Pari. Ann. Botan. 34, 879–888 (1970).Google Scholar
  50. Ruhland, W.: Untersuchungen über die Hautdrüsen der Plumbaginaceen. Ein Beitrag zur Biologie der Halophyfen. J. Wiss. Botan. 55, 409–198 (1915).Google Scholar
  51. Schmidt-Nielsen, K.: Physiology of salt glands. In: Wohlfahrt-Botterman, K.E. (Ed.): Sekretion and exkretion, pp.269–288. Berlin-Heidelberg-New York: Springer 1965.Google Scholar
  52. Schmidt-Nielsen, B., Davis, L.E.: Fluid transport and tubular intercellular spaces in reptilian kidneys. Science 159, 1105–1108 (1968).PubMedCrossRefGoogle Scholar
  53. Schnepf, E.: Uber Zellwandstrukturen bei Köpfchendrüsen der Schuppenblätter von Lathraea clandestina L. Planta 60, 473–182 (1964).CrossRefGoogle Scholar
  54. Schnepf, E.: Licht- und elektronenmikroskopische Beobachtungen an den Trichom-Hydathoden von Cicer arietinum. Z. Pflanzenphysiol. 53, 245–254 (1965).Google Scholar
  55. Schnepf, E.: Sekretion und Exkretion bei Pflanzen. Protoplasmatologia. 8, 1–181 (1969).Google Scholar
  56. Scholander, P.F.: How mangroves desalinate seawater. Physiol. Plantarum 21, 251–261 (1968).CrossRefGoogle Scholar
  57. Scholander, P.F., Bradstreet, E.D., Hammel, H.T., Hemmingsen, E.A.: Sap concentration in halophytes and some other plants. Plant Physiol. 41, 529–532 (1966).PubMedCrossRefGoogle Scholar
  58. Scholander, P.F., Hammel, H.T., Bradstreet, E.D., Hemmingsen, E.A.: Sap pressure in vascular plants. Sci. 148, 339–345 (1965).CrossRefGoogle Scholar
  59. Scholander, P.F., Hammel, H.T., Hemmingsen, E., Garry, W.: Salt balance in mangroves. Plant Physiol. 37 (6), 722–729 (1962).PubMedCrossRefGoogle Scholar
  60. Schtscherback, J.: Uber die Salzausscheidung durch die Blätter vonStatice gmelini. Ber. Deut. Botan. Ges. 28, 30–34 (1910).Google Scholar
  61. Shachar-Hill, B., Hill, A. E.: Ion and water transport inLimonium. Biochim. Biophys. Acta 211, 313–317 (1970).CrossRefGoogle Scholar
  62. Shimony, C., Fahn, A.: Light and electron microscopical studies on the structure of salt glands of Tamarix aphylla L. J. Linn. Soc. 60, 283–288 (1968).CrossRefGoogle Scholar
  63. Skelding, A.D., Winterbotham, J.: The structure and development of the hydathodes of Spartina townsendii groves. New Phytol. 38, 69–79 (1939).CrossRefGoogle Scholar
  64. Skou, J.C: Enzymatic aspects of active linked transport of Na+ and K+ through the cell membrane. Progr. Biophys. Molec. Biol. 14, 131–166 (1964).CrossRefGoogle Scholar
  65. Smaoui, M.A.: Differentiation des trichomes chezAtriplex halimus L. C. R. Acad. Sci. 273, 1268–1271 (1971).Google Scholar
  66. Stocking, C.: Guttation and bleeding. In: Ruhland, W. (Ed.): Handbuch der Pflanzenphysiologie, Vol.3, pp.489–502. Berlin-Göttingen-Heidelberg: Springer 1956.Google Scholar
  67. Thomson, W.W., Liu, L.L.: Ultrastructural features of the salt gland of Tamarix aphylla L. Planta 73, 201–220 (1967).CrossRefGoogle Scholar
  68. Thomson, W.W., Berry, W.L., Liu, L.L.: Localization and secretion of salt by the salt glands of Tamarix aphylla. Proc. Natl. Acad. Sei. U.S. 63, 310–317 (1969).CrossRefGoogle Scholar
  69. Tormey, J. McD., Diamond, J. M.: The ultrastructural route of fluid transport in rabbit gall bladder. J. Gen. Physiol. 50, 2031–2060 (1967).PubMedCrossRefGoogle Scholar
  70. Volken, G.: 1884. Die Kalkdrüsen der Plumbagineen. Ber. Deut. Botan. Ges. 2, 334–342 (1967).Google Scholar
  71. Waisel, Y.: Ecological studies on Tamarix aphylla (L.) Karst. III. The salt economy. Plant Soil. 13, 356–364 (1961).CrossRefGoogle Scholar
  72. Ziegler, H., Lüttge, U.: Die Salzdrüsen vonLimonium vulgare. I. Die Feinstruktur. Planta 70, 193–206 (1966).CrossRefGoogle Scholar
  73. Ziegler, H., Lüttge, U.: Die Salzdrüsen vonLimonium vulgare. II. Die Lokalisierung des Chloride. Planta 74, 1–17 (1967)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1975

Authors and Affiliations

  • W. W. Thomson

There are no affiliations available

Personalised recommendations