Skip to main content

Metabolic and Biochemical Aspects of Salt Tolerance

  • Chapter
Plants in Saline Environments

Part of the book series: Ecological Studies ((ECOLSTUD,volume 15))

Abstract

It seems a truism to say that every organism must have its biochemical and structural properties adapted so that it is able to function in its habitat. Nevertheless, when investigating the causal relationships between ecological conditions and biochemical responses, one ends up with information relevant to our understanding of the regulation of basic cell functions, such as membranes and metabolism. Apart from the immediate importance of studying major ecological problems such as salinity from the biochemical point of view, it should be possible to utilize the data to shed light on fundamental theoretical aspects of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad, R., Hewitt, E. J.: Studies on the growth and phosphatase activities in Suaeda fruticosa. Plant and Soil 34, 691–696 (1971).

    Article  CAS  Google Scholar 

  • Baxter, R.M., Gibbons, N.E.: The glycerol dehydrogenases of Pseudomonas salinasia, Vibrio costicolus, and E. coli in relation to bacterial halophilism. Can. J. Biochem. Physiol. 32, 206–217 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Ben-Amotz, A., Avron, M.: Photosynthetic activities of the halophilic alga Dunaliella parva. Plant Physiol. 49, 240–243 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Ben-Amotz, A., Avron, M.: The role of glycerol in the osmotic regulation of the halophilic alga Dunaliella parva. Plant Physiol. 51, 875–873 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Benson, A. A.: Plant membrane lipids. Ann. Rev. PL Physiol. 15, 1–16 (1964).

    Article  CAS  Google Scholar 

  • Ben-Zioni, A., Itai, C., Vaadia, Y.: Water and salt stresses, kinetin and protein synthesis in tobacco leaves. Plant Physiol. 42, 361–365 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal-Goldschmidt, S., Poljakoff-Mayber, A.: Effect of substrate salinity on growth and on submicroscopic structure of leaf cells of Atriplex halimus L. Australian J. Botan. 16, 469–478 (1968).

    CAS  Google Scholar 

  • Boucaud, J.: Effets du NaCl sur l’activité du nitrate réductase chez dçux variétées halophiles: Suaeda maritima (L.) Dum. variété macrocarpa (MOQ) et variété flexilis (Focke). Physiol.Plant. 27, 37–42 (1972).

    CAS  Google Scholar 

  • Bouillenne-Walrand, M., Bouillenne-Walrand, R.: Contribution á l’étude de la respiration en fonction de l’hydratation. Échanges respiratoires dans les racines tuberisées de Brassica napus’L. Ann. Physiol. Physiochim. Biol. 2, 426–167 (1926).

    Google Scholar 

  • Bowling, I.F., Turkina, M.V., Krasavina, M.S., Kryuchesnikova, A.L.: Na+-, K+ activated ATPase of conducting tissues. Fiziol. Rast. (Transi.) 19, 824–832 (1972).

    Google Scholar 

  • Brandle, I.R., Schnare, P.D., Hinckley, T.M., Brown, G.N.: Changes in polysomes of black locust seedling during dehydration-rehydration cycles. Physiol. Plant. 29, 406–109 (1973).

    Article  CAS  Google Scholar 

  • Brownell, P. F.: Sodium as an essential micronutrient for some higher plants. Plant and Soil 28, 161–164 (1968).

    Article  Google Scholar 

  • Brownell, P.F., Crossland, C. J.: The requirement for sodium as a micronutrient by species having the C4 dicarboxylic photosynthetic pathway. Plant Physiol. 49, 794–797 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Collander, R.: Selective absorption of cations by higher plants. Plant Physiol. 16, 691–720 (1941).

    Article  PubMed  CAS  Google Scholar 

  • Conway, T.W., Lipman, F.: Characterization of a ribosome-linked guanosine triphosphatase in Escherichia coli extracts. Proc. Natl. Acad. Sci. U.S. 52, 1462–1469 (1964).

    Article  CAS  Google Scholar 

  • Coombs, J.: The potential of higher plants with the phosphopyruvic acid cycle. Proc. Roy. Soc. London B 179, 221–235 (1971)

    Article  CAS  Google Scholar 

  • Dainty, J.: Ion transport and electrical potentials in plant cells. Ann. Rev. Plant Physiol. 13, 379–402 (1962).

    Article  CAS  Google Scholar 

  • Daubenmire, R.F.; Plants and Environment. 2nd ed. New York: Wiley 1959.

    Google Scholar 

  • Eisenman, G.: On the elementary atomic origin of equilibrium ionic specificity. Kleinzeller, A., and Kotyk, A. (Eds.): Membrane transport and metabolism, pp. 163–179. New York: Academic Press 1960.

    Google Scholar 

  • El-Sheikh, A. M., Uhlrich, A., Broyer, T.C.: Sodium and rubidium as possible nutrients for sugar beet plants. Plant. Physiol. 42, 1202–1208 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Evans, H. J., Sorger, G.J.: Role of mineral elements with emphasis on the univalent cations. Ann. Rev. Plant. Physiol, 17, 47–76 (1966).

    Article  CAS  Google Scholar 

  • Fisher, J., Hansen, D., Hodges, T.K.: Correlation between ion fluxes and ion-stimulated adenosine triphosphatase activity of plant roots. Plant Physiol. 46, 812–814 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Fisher, J., Hodges, T.K.: Monovalent ion stimulated adenosine triphosphatase from oat roots. Plant Physiol. 44, 385–395 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Flowers, T.I.: Salt tolerance inSuaeda maritima (L.) Dum. The effect of sodium chloride on growth, respiration, and soluble enzymes in a comparative study with Pisum sativum L. J. Exp. Botan. 23, 310–321 (1972a).

    Article  CAS  Google Scholar 

  • Flowers, T. I.: The effect of sodium chloride on enzyme activities from four halophyte species ofChenopodiaceae. Phytoehemistry 11, 1881–1886 (1972b).

    Article  CAS  Google Scholar 

  • Gee, R., Joshi, G., Bils, R.F., Saltman, P.: Light and dark C02 fixation by spinach leaf systems. Plant Physiol. 40, 89–96 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Ginzburg, M.: The unusual membrane permeability of two halophilic unicellular organisms. Biochim. Biophys. Acta 173, 370–376 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Goas, M.: Sur le métabolisme azote des halophytes: Études des acides amines et amides libres. Soc. Franc. Physiol. Vêget. Bull. 11, 309–316 (1965).

    CAS  Google Scholar 

  • Goas, M.: Contribution á l’étude du métabolisme azote des halophytes: Acides amines et amides libresd’Aster tripolium L. en aquiculture. C.R. Séances Acad. Sci. (Paris) Ser. D 265, 1049–1052 (1967).

    CAS  Google Scholar 

  • Graziani, Y., Livne, A.: Water permeability of bilayer lipid membranes: sterol-lipid interaction. J. Membrane Biol. 7, 275–284 (1972).

    Article  CAS  Google Scholar 

  • Green, D.E., Tzagoloff, A.: Role of lipids in the structure and function of biological membranes. J. Lipid Res. 7, 587–602 (1966).

    PubMed  CAS  Google Scholar 

  • Greenway, H.: Effects of slowly permeating osmotica on metabolism of vacuolated and nonvacuolated tissues. Plant Physiol. 46, 254–258 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Greenway, H., Hiller, R.G.: Effects of low water potentials on respiration and on glucose and acetate uptake by Chlorella pyrenoidosa. Planta 75, 253–274 (1967).

    Article  CAS  Google Scholar 

  • Greenway, H., Leahy, M.: Effects of rapidly and slowly permeating osmotica on metabolism. Plant Physiol. 46, 259–262 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Greenway, H., Osmond, C.B.: Salt responses of enzymes from species differing in salt tolerance. Plant Physiol. 49, 256–259 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Hackett, D.P.: Effects of salts on DPNH oxidase activity and structure of sweet potato mitochondria. Plant Pfiysiol. 36, 445–152 (1961).

    Article  CAS  Google Scholar 

  • Hall, J.L.: A histochemical study of adenosine triphosphatase and other nucleotide phosphatases in young root tips. Planta 89, 254–265 (1969).

    Article  CAS  Google Scholar 

  • Hall, J. L.: Further properties of adenosine triphosphatase and β-glycerophosphatase from barley roots. J. Exp. Botan. 22, 800–808 (1971).

    Article  CAS  Google Scholar 

  • Hansson, G., Kuiper, P.J.C., Kylin, A.: Effect of preparation method on the induction of (sodium + potassium)-activated adenosine triphosphatase from sugar beet root and its lipid composition. Physiol. Plant. 28, 430–435 (1973).

    Article  CAS  Google Scholar 

  • Hansson, G., Kylin, A.: ATPase activities in homogenates from sugar beet roots, relation to Mg2+ and (Na+ + K+)-stimulation. Z. Pflanzenphysiol. 60, 270–275 (1969).

    CAS  Google Scholar 

  • Hasson-Porath, E., Poljakoff-Mayber, A.: The effect of salinity on the malic dehydrogenase of pea roots. Plant Physiol. 44, 1031–1034 (1969).

    Article  Google Scholar 

  • Hasson-Porath, E., Poljakoff-Mayber, A.: Lactic acid content and formation in pea roots exposed to salinity. Plant Cell Physiol. 11, 891–897 (1970).

    CAS  Google Scholar 

  • Hasson-Porath, E., Poljakoff-Mayber, A.: Content of adenosine phosphate compounds in pea roots grown in saline media. Plant Physiol. 47, 109–113 (1971)

    Article  PubMed  CAS  Google Scholar 

  • Hecht-Buchholz, Ch.: The effect of potassium deficiency on fine structure of proplastids. Skokloster colloquium on potassium in biochemistry and physiology, pp. 40–49. Bern: Intern. Potash Inst. 1971 (1973).

    Google Scholar 

  • Hecht-Buchholz, Ch., Marschner, H.: Veränderungen der Feinstruktur von Zellen der Maiswurzelspitze bei Entzug von Kalium. Z. Pflanzenphysiol. 63, 416–427 (1970).

    CAS  Google Scholar 

  • Hecht-Buchholz, Ch., Pflüger, R., Marschner, H.: Einfluß von Natriumchlorid auf Mitochondrienzahl und Atmung von Mais wurzelspitzen. Z. Pflanzenphysiol. 65, 410–417 (1971).

    CAS  Google Scholar 

  • Hexum, T., Samson, E., Himes, R.: Kinetic studies of membrane (Na+ — K + -Mg2+)-ATPase. Biochim. Biophys. Acta 212, 322–331 (1970).

    PubMed  CAS  Google Scholar 

  • Hill, B.S., Hill, A. K.: Enzymatic approaches to chloride transport in the Limonium salt gland, pp. 379–384. In: Anderson, W.P. (Ed.). Ion transport in plants. London, New York: Academic Press (1972) 1973.

    Google Scholar 

  • Hiller, R.G., Greenway, H.: Effects of low water potentials on some aspects of carbohydrate metabolism in Chlorella pyrenoidosa. Planta 78, 49–59 (1968).

    Article  CAS  Google Scholar 

  • Hippel, P. H., von, Scheich, T.: The effects of neutral salts on the structure and conformational stability of macromolecules in solution, pp. 417–574. In: Timasheff, S.W., Fassman, G.D. (Eds.): Structure and stability of biological macromolecules. New York: Marcel Decker Inc. 1969.

    Google Scholar 

  • Hopfer, U., Lehninger, A.L., Lennarz, W. J.: The effect of the polar moiety of lipids on bilayer conductance induced by uncouplers of oxidative phosphorylation. J. Membrane Biol. 3, 142–155 (1970).

    Article  CAS  Google Scholar 

  • Jackman, M. E., VanSteveninck, R.F.M.: Changes in the endoplasmic reticulum of beet root slices during aging. Australian J. Biol. Sci. 20, 1063–1068 (1967).

    Google Scholar 

  • Johnson, M.K., Johnson, R.D., Macelroy, R.D., Speer, H., Bruff, B.S.: Effects of salts on the halophilic algaDunaliella viridis. J. Bacteriol. 95, 1461–1468 (1968).

    PubMed  CAS  Google Scholar 

  • Jokela, A.C.-C.T.: Outer membrane ofDunaliella tertiolecta: Isolation and properties. Ph. D. Dissertation, Univ. of Calif. San Diego (1969).

    Google Scholar 

  • Joshi, G., Dolan, T., Gee, R., Saltman, P.: Sodium chloride effect on dark fixation of C02 by marine and terrestrial plants. Plant Physiol. 37, 446–149 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Kahane, I., Poljakoff-Mayber, A.: Effect of substrate salinity on the ability for protein synthesis in pea roots. Plant Physiol. 43, 1115–1119 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Karlsson, J., Tribukait, B., Kylin, A.: Electrical mobilities of fragments of sugar beet root membranes with properties as (Na+ +K+)-activated adenosine triphosphatases. Proc. 1st. European Biophys. Congr. III, 75–79 (1971).

    Google Scholar 

  • Karlsson, K.-A., Samuelsson, B.E., Steen, G.O.: Lipid pattern and Na+ -K + - dependent adenosine triphosphatase activity in the salt gland of duck before and after adaptation to hypertonic saline. J. Membrane Biol. 5, 169–184 (1971).

    Article  CAS  Google Scholar 

  • Kates, M., Hancock, A. J., Derod, P.W.: Phosphatide and glycolipid sulfate esters in cell envelope of Halobacterium cutirubrum. Abst. Commun. Meet. Fed. European. Biochem. Soc. 8, 124(1972).

    Google Scholar 

  • Kauss, H.: Metabolism of isofloridoside and osmotic balance in the fresh water alga Ochromonas. Nature 214, 1129–1130 (1967).

    Article  CAS  Google Scholar 

  • Kavanau, J.L.: Water and solute-water interactions. San Fransisco: Holden-Day 1964.

    Google Scholar 

  • Kessler, B.: Nucleic acids as factors in drought resistance. Recent Advanc. Botan. 2, 1153–1159 (1961).

    Google Scholar 

  • Kessler, B.: The physiological basis of the tolerance of evergreen trees to lime and saline soil and water conditions, with special reference to the selection of root stocks of Avocado and Citrus by physiological tests. Final report. Rehovot, Israel: Volcani Inst, of Agric. Res. Nov. 1966.

    Google Scholar 

  • Kessler, B., Chen, D.: Mediumspecific activity of polynucleotide phosphorylase. 6th Int. Biochem. Congr. (Moscow) I, 65 (1964).

    Google Scholar 

  • Kessler, B., Snir, I.: Salt effects on nucleic acids and protein metabolism in Citrus seedlings. Proc. 1st. Int. Citrus Symp. 1, 381–386 (1969).

    CAS  Google Scholar 

  • Klis, F.M.: α-Glucosidase activity at the cell surface in callus of Convolvolus arvensis. Physiol. Plant. 25, 253–257 (1971).

    Article  CAS  Google Scholar 

  • Klotz, I.M.: Protein hydration and behavior. Science 128, 815–822 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Krasavina, M.S., Vyskrebentseva, E.I.: ATPase activity and transport of potassium and sodium in root tissues. Fiziol. Rast. (Transl.) 19, 833–837 (1972).

    Google Scholar 

  • Kuiper, P.J.C.: Lipids in grape roots in relation to chloride transport. Plant Physiol. 43, 1367–1371 (1968a).

    Article  PubMed  CAS  Google Scholar 

  • Kuiper, P.J.C.: Ion transport chracteristics of grape root lipids in relation to chloride transport. Plant Physiol. 43, 1372–1374 (1968b).

    Article  PubMed  CAS  Google Scholar 

  • Kuiper, P. J.C.: Effect of lipids on chloride and sodium transport in bean and cotton plants. Plant Physiol. 44, 968–972 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Kueper, P. J.C.: Temperature response of adenosine triphosphatase of bean roots as related to growth temperature and to the lipid requirement of the adenosine triphosphatase. Physiol. Plant. 26, 200–205 (1972a).

    Google Scholar 

  • Kuiper, P.J.C.: Water transport across membranes. Ann. Rev. Plant Physiol. 23, 157–172 (1972b).

    Article  CAS  Google Scholar 

  • Kuiper, P.J.C., Livne, A.: Properties of the camel erythrocyte membrane. Abstr. 9th. Intern. Congr. Biochem, p. 281. Stockholm 1973.

    Google Scholar 

  • Kylin, A.: An outpump balancing phosphate-dependent sodium uptake in Scenedesmus. Biochem. Biophys. Res. Commun. 16, 497–500 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Kylin, A.: Uptake and loss of Na+, Rb+, and Cs+ in relation to an active mechanism for extrusion of Na+ in Scenedesmus. Plant Physiol. 41, 579–584 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Kylin, A.: Adenosine triphosphatases stimulated by (sodium + potassium): Biochemistry and possible significance for salt resistance, pp. 369–377. In: Anderson, W.P. (Ed.): Ion Transport in Plants. London, New York: Academic Press (1972) 1973.

    Google Scholar 

  • Kylin, A., Gee, R.: Adenosine triphosphatase activities in leaves of the mangrove Avicennia nitida Jacq. Influence of sodium to potassium ratios and salt concentrations. Plant Physiol. 45, 169–172 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Kylin, A., Hansson, G.: Transport of sodium and potassium, and properties of (sodium+ potassium)-activated adenosine triphosphatases: possible connection with salt tolerance in plants. Skokloster colloquium on potassium in biochemistry and physiology, pp. 64–68. Bern: Intern. Potash Inst. 1971 (1973).

    Google Scholar 

  • Kylin, A., Kähr, M. The effect of magnesium and calcium ions on adenosine triphosphatases from wheat and oat roots at different pH. Physiol. Plant. 28, 452–457 (1973).

    Article  CAS  Google Scholar 

  • Kylin, A., Kuiper, P. J.C., Hansson, G.: Lipids from sugar beet in relation to the preparation and properties of (sodium 4- potassium)-activated adenosine triphosphatases. Physiol. Plant. 26, 271–278 (1972).

    CAS  Google Scholar 

  • Lai, Y.F., Thompson, J. E.: The preparation and properties of an isolated plant membrane fraction enriched in (Na+ +K+) stimulated ATPase. Biochim. Biophys. Acta 233, 84–90 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Lai, Y.F., Thompson, J.E.: Effect of germination on (Na+ — K+)-stimulated adenosine 5’-triphosphatase and ATP-dependent ion transport of isolated membranes from cotyledons. Plant Physiol. 50, 452–457 (1972a).

    Article  PubMed  CAS  Google Scholar 

  • Lai, Y.F., Thompson, J. E.: The behavior of ATPase in cotyledon tissue during germination. Can. J. Bot. 50, 327–332 (1972b).

    Article  CAS  Google Scholar 

  • Laties, G.G.: The osmotic inactivation in situ of plant mitochondrial enzymes. J. Exp. Botan. 5, 49–70 (1954).

    Article  CAS  Google Scholar 

  • Leigh, R. A., Wyn Jones, R.G., Williamson, F. A.: The possible role of vesicles and ATPases in ion uptake, pp 407–418. In: Anderson, W.P. (Ed.): Ion transport in plants. London, New York: Academic Press (1972) 1973.

    Google Scholar 

  • Leonard, R.T., Hansen, D., Hodges, T.K.: Membrane-bound adenosine triphosphatase activities of oat roots. Plant Physiol. 51, 749–754 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Leonard, R.T., Hanson, J. B.: Induction and development of increased ion absorption in corn root tissue. Plant Physiol. 49, 430–435 (1972a).

    Article  PubMed  CAS  Google Scholar 

  • Leonard, R.T., Hanson, J. B.: Increased membrane-bound adenosine triphosphatase activity accompanying development of enhanced solute uptake in washed corn root tissue. Plant Physiol. 49, 436–440 (1972b).

    Article  PubMed  CAS  Google Scholar 

  • Leonard, R.T., Hodges, T.K.: Kinetics of KC1 stimulated plasma membranes from oat roots. Plant Physiol. 51 (Suppl.), 234 (1973)

    Google Scholar 

  • Livne, A., Levin, N.: Tissue respiration and mitochondrial oxidative phosphorylation of NaCl-treated pea seedlings. Plant Physiol. 42, 407–114 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Lubin, M.: A priming reaction in protein synthesis. Biochim. Biophys. Acta 72, 345–348 (1963)

    Article  PubMed  CAS  Google Scholar 

  • Marin, B., Vieira Da Silva, J.: Influence de la carence hydrique sur la repartition cellulaire de Facide ribonucleique foliaire chez le cotonnier. Physiol. Plant. 27, 150–155 (1972).

    Article  CAS  Google Scholar 

  • Mazur, P.: Freezing injury in plants. Ann. Rev. PL Physiol. 20, 419–445 (1969).

    Article  Google Scholar 

  • Mcclurkin, I.T., Mcclurkin, D.C.: Cytochemical demonstration of a sodium-activated and a potassium-activated adenosine triphosphatase in loblolly pine seedlings. Plant Physiol. 42, 1103–1110 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Mothes, K.: Der Einfluß des Wasserzustandes auf Fermentprozesse und Stoffumsatz. Ruhland, W. (Ed.): Encyclopedia of plant physiology III, 656–664. Berlin-Göttingen-Heidelberg-New York: Springer 1956.

    Google Scholar 

  • Nieman, R.H.: Salt suppression of glucose and phosphate uptake by root tissue, p. 158. XI. Int. Botan. Congr. (Seattle) Abstracts 1969.

    Google Scholar 

  • Nir, I., Klein, S., Poljakoff-Mayber, A.: Effect of moisture stress on submicroscopic structure of maize roots. Australian J. Biol. Sci. 22, 17–33 (1969).

    Google Scholar 

  • Nir, I., Klein, S., Poljakoff-Mayber, A.: Changes in fine structure of root cells from maize seedlings exposed to water stress. Australian. J. Biol. Sci. 23, 489–491 (1970).

    Google Scholar 

  • Nir, I., Poljakoff-Mayber, A., Klein, S.: The effect of water stress on mitochondria of root cells. A biochemical and cytochemical study. Plant Physiol. 45, 173–177 (1970a).

    Article  PubMed  CAS  Google Scholar 

  • Nir, I. Poljakoff-Mayber, A., Klein, S.: The effect of water stress on the polysome population and the ability to incorporate amino acids in maize root tips. Israel J. Botan. 19, 451–462 (1970b).

    Google Scholar 

  • Nissen, P.: Kinetics of ion uptake in higher plants. Physiol. Plant. 28, 113–120 (1973a).

    Article  CAS  Google Scholar 

  • Nissen, P.: Multiphasic ion uptake in roots, pp. 539–553. In: Anderson, W.P. (Ed.): Ion transport in plants. London, New York: Academic Press (1972) 1973b.

    Google Scholar 

  • Norkrans, B.: Studies on marine occurring yeasts: Respiration, fermentation and salt tolerance. Arch. Mikrobiol. 62, 358–372 (1968).

    Article  Google Scholar 

  • Norkrans, B., Kylin, A.: Regulation of the potassium to sodium ratio and of the osmotic potential in relation to salt tolerance in yeasts. J. Bacteriol. 100, 836–845 (1969).

    PubMed  CAS  Google Scholar 

  • Okamoto, H., Suzuki, Y.: Intracellular concentration of ions in a halophilic strain of Chlamydomonas. I. Concentration of Na, K, and CI in the cell. Z. Allg. Mikrobiol. 4, 350–357 (1964)

    CAS  Google Scholar 

  • Onishi, H.: Studies on osmophilic yeasts. Part XV. The effects of high concentrations of chloride on polyalcohol production. Agr. Biol. Chem. 27, 543–547 (1963).

    CAS  Google Scholar 

  • Osmond, C.B., Greenway, H.: Salt responses of carboxylation enzymes from species differing in salt tolerance. Plant Physiol. 49, 260–263 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D.: Na+—K+ discrimination by “pure” phospholipid membranes. Biochim. Biophys. Acta 241, 254–259 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Pardee, A.B.: Membrane transport proteins. Science 162, 632–637 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Pierce, W.S., Higinbotham, N.: Compartments and fluxes of K+, Na+, and Cl- in Avena coleoptile cells. Plant Physiol. 46, 666–673 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Pitman, M. G.: Adaptation of barley roots to low oxygen supply and its relation to sodium and potassium uptake. Plant Physiol. 44, 1233–1240 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Pitman, M.G., Courtice, A. L., Lee, B.: Comparison of potassium and sodium uptake by barley roots at high and low salt status. Australian. J. Biol. Sci. 21, 871–881 (1968).

    CAS  Google Scholar 

  • Poole, R. J.: Effect of sodium on potassium fluxes at the cell membrane and vacuole membrane of red beet. Plant Physiol. 47, 731–734 (1971a).

    Article  PubMed  CAS  Google Scholar 

  • Poole, R. J.: Development and characteristics of sodium-selective transport in red beet. Plant Physiol. 47, 735–739 (1971b).

    Article  PubMed  CAS  Google Scholar 

  • Porath, E., Poljakoff-Mayber, A.: Effect of salinity on metabolic pathways in pea root tips. Israel J. Botan. 13, 115–121 (1964).

    Google Scholar 

  • Porath, E., Poljakoff-Mayber, A.: The effect of salinity in the growth medium on carbohydrate metabolism in pea root tips. Plant Cell Physiol. 9, 195–203 (1968).

    CAS  Google Scholar 

  • Ratner, A., Jacoby, B.: Non-specificity of salt effects on Mg2+-dependent ATPase from grass roots. J. Exp. Botan. 24, 231–238 (1973).

    Article  CAS  Google Scholar 

  • Roelofsen, B.: Some studies on the extractability of lipids and the ATPase activity of the erythrocyte membrane. Diss. Unv. of Utrecht, Netherlands 1–66 (1968).

    Google Scholar 

  • Rothstein, A.: Membrane function and physiological activity of microorganisms, pp. 23–39. In: Hoffman, J.F. (Ed.): The cellular functions of membrane transport. Englewood Cliffs, N.J.: Prentice Hall 1964.

    Google Scholar 

  • Saltman, P., Forte, J. G., Forte, G.M.: Permeability studies on chloroplasts from Nitella. Exptl. Cell. Res. 29, 504–514 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Shomer-Ilan, A., Waisel, Y.: The influence of sodium on the balance between the C3- and C4-carbon fixation pathways. Physiol. Plant 29, 190–193 (1973).

    Article  CAS  Google Scholar 

  • Skou, J. C.: Enzymatic aspects of linked transport of Na and K through the cell membrane. Progr. Biophys. Molec. Biol. 14, 131–166 (1964).

    Article  CAS  Google Scholar 

  • Smith, A.U.: Effects of low temperatures on living cells and tissues, pp. 1–62. In: Harris, R.J. C. (Ed.): Biological Applications of Freezing and Drying. New York: Academic Press 1954.

    Google Scholar 

  • Spanswick, R.M., Stolarek, J., Williams, E. J.: The membrane potential of Nitella translucens. J. Exp. Botan. 18, 1–16 (1967).

    Article  CAS  Google Scholar 

  • Spanswick, R.M., Williams, E.J.: Electrical potentials and Na, K, and CI concentrations in the vacuole and cytoplasm ofNitella translucens. J. Exp. Botan. 15, 193–200 (1964).

    Article  CAS  Google Scholar 

  • Steinhardt, J., Beychok, S.: Interaction of proteins with hydrogen ions and other smaller ions and molecules, Vol. II, pp. 139–304. In: Neurath, H. (Ed.): The proteins, New York: Academic Press 1964.

    Google Scholar 

  • Steveninck, R.F.M.van: Potassium fluxes in red beet tissue during its “lag phase”. Physiol. Plant. 15, 211–215 (1962).

    Article  Google Scholar 

  • Steveninck, R.F.M., van, Jackman, M. E.: Respiratory activity and morphology of mitochondria isolated from whole and sliced storage tissue. Australian. J. Biol. Sci. 20, 749–760 (1967).

    Google Scholar 

  • Stewart, C.R.: Proline content and metabolism during rehydration of wilted excised leaves in the dark. Plant Physiol. 50, 679–681 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Stocker, O.: Die Dürreresistenz, Vol. III, pp. 696–741. In: Ruhland, W. (Ed.): Encyclopedia of plant physiology. Berlin-Göttingen-Heidelberg-New York: Springer 1956.

    Google Scholar 

  • Strogonov, B. P.: Physiological basis of salt tolerance of plants. Translated from Russian original (1962) by Poljakoff-Mayber, A. and Mayer, A.M. Jerusalem: Israel Program for Scientific Translations 1964.

    Google Scholar 

  • Suelter, C.H.: Enzymes activated by monovalent cations. Science 168, 789–795 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Takaoki, T.: Relationships between plant hydrature and respiration II. J. Sci. Hiroshima Univ. Ser. B: 2, 8, 73–80 (1957).

    Google Scholar 

  • Twersky, M., Felhendler, R.: Effect of water quality on relationships between cationic species and leaf lipids at two development stages in cotton. Physiol. Plant. 29, 396–401 (1973).

    Article  CAS  Google Scholar 

  • Udovenko, G.V., Mashanskii, V. F., Sinitskaya, I.A.: Changes of root cell ultrastructure under salinization in giants of different salt resistance. Fiziol. Rast. (Transl.) 17, 813–818 (1970).

    Google Scholar 

  • Vaadia, Y., Raney, F.C., Hagan, R.M.: Plant water deficits and physiological processes. Ann. Rev. Plant Physiol. 12, 265–292 (1961).

    Article  CAS  Google Scholar 

  • Waisel, Y.: Biology of halophytes. New York, London: Academic Press 1972.

    Google Scholar 

  • Waisel, Y., Eshel, A.: Localization of ions in the mesophyll cells of the succulent halophyte Suaeda monoica Forssk. by X-ray microanalysis. Experientia 27, 230–232 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Walter, H., Kreeb, K.: Die Hydratation und Hydratur des Protoplasmas und ihre ökophysiologische Bedeutung. Protoplasmatologia II C6. Vienna: Springer-Verlag 1970.

    Google Scholar 

  • Webb, K.L., Burley, J.W.A.: Dark fixation of 14C02 by obligate and facultative salt marsh halophytes. Can. J. Botan. 43, 281–285 (1965).

    Article  CAS  Google Scholar 

  • Weimberg, R.: Effect of sodium chloride on the activity of a soluble malate dehydrogenase from pea seeds. J. Biol. Chem. 242, 3000–3006 (1967).

    PubMed  CAS  Google Scholar 

  • Weimberg, R.: Enzyme levels in pea seedlings grown on highly salinized media. Plant Physiol. 46, 466–470 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Winter, K.: Zum Problem der Ausbildung des Crassulaceensäurestoffwechsels bei Mesembryanthemum crystallinum unter NaCl-Einfluß. Planta 109, 135–145 (1973).

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Kylin, A., Quatrano, R.S. (1975). Metabolic and Biochemical Aspects of Salt Tolerance. In: Poljakoff-Mayber, A., Gale, J. (eds) Plants in Saline Environments. Ecological Studies, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80929-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80929-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80931-6

  • Online ISBN: 978-3-642-80929-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics