Skip to main content

Chemical Automata in Homogeneous and Reaction-Diffusion Kinetics

  • Conference paper
Physics and Mathematics of the Nervous System

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 4))

Abstract

A finite automaton or, synonymously, a finite state machine is in the simplest case a triple (X,I,λ), whereby X is a finite set of states, I is a finite set of inputs, and λ is the next-state mapping, such that λ : X x I → X (cf. Arbib, 1969). For example, if x1 and x2 are two state variables each possessing two possible states, the whole automaton has four possible states, and λ specifies the transitions between these states in dependence on a given input. If the input is constant, one speaks of an autonomous automaton, otherwise of a nonautonomous automaton .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andronov, A.A., Leontovich, E.A., Gordon, I.I., and Maier, A.G.: Theory of Bifurcations of Dynamic Systems on a Plane, Israel Program for Scientific Translations, Jerusalem, 1971 (First appeared in Russian, 1967).

    Google Scholar 

  • Arbib, M.A.: Theories of Abstract Automata, Prentice Hall, Englewood Cliffs, 1969.

    MATH  Google Scholar 

  • Bhatia, N.P. and Szegö, G.P.: Stability Theory of Dynamical Systems, Springer Verlag, Berlin-Heidelberg-New York, 1970.

    MATH  Google Scholar 

  • Burks, A.W.: Computation, behavior, and structure in fixed and growing automata, Behav. Sci. 6 , 5–22 (1961).

    Article  Google Scholar 

  • Erdös, P. and Rénji, A.: On the evolution of random graphs, Publications Math. Inst. Hungarian Acad. Sci., 5, 17–95 (1960).

    MATH  Google Scholar 

  • Haken, H.: Introduction to synergetics. In: Synergetics, Cooperative Phenomena in Multi-component Systems, ed. by H. Haken, pp. 1–19. B.G. Teubner Verlag, Stuttgart, 1973.

    Google Scholar 

  • Heineken, F.G., Tsuchiya, H.M., and Aris, R.: On the mathematical status of the pseudo-steady state hypothesis of biochemical kinetics, Math. Biosci. 1, 95–113 (1967).

    Article  Google Scholar 

  • Herschkowitz-Kaufman, M. and Nicolis, G.: Localized spatial structures and chemical waves in dissipative systems, J. Chem. Phys. 36, 1890–1895 (1972).

    Article  Google Scholar 

  • Higgins, J.: The theory of oscillating reactions, Indl. Engrg. Sci. 59, 19–62 (1967).

    Google Scholar 

  • Hotz, G. and Walter, H.: Automatentheorie und Formale Sprachen II, Endliche Automaten, Bibliographisches Institut, Mannheim-Vienna-Zürich, 1969.

    MATH  Google Scholar 

  • Kaiman, R.E., Falb, P.L., and Arbib, M.A.: Topics in Mathematical System Theory, McGraw-Hill, New York, 1969.

    Google Scholar 

  • Keyes, R.W. and Landauer, R.: Minimum energy dissipation in logic, IBM J. Res. Develop. 14, 152 (1970).

    Article  Google Scholar 

  • Landauer, R. and Woo, J.W.F.: In: Synergetics: Cooperative Phenomena in Multi-Component Systems, ed. by H. Haken. Teubner, Stuttgart,1973.

    Google Scholar 

  • Lutz, R.S.: Oscillations and hysteresis behavior in enzymatic systems involving inhibited inhibition, under varying concentrations of inhibitor (in German), Diploma Work, University of Tübingen (1973).

    Google Scholar 

  • Martinez, H.M.: Morphogenesis and chemical dissipative structures, a computer simulated case study, J. theor. Biol.36, 479–501 (1972).

    Article  Google Scholar 

  • McCulloch, W.S. and Pitts, W.: A logical calculus of the ideas immanent in nervous activity, Bull. math. Biophysics, 11, 115–133 (1943).

    Article  MathSciNet  Google Scholar 

  • Meinhardt, H. and Gierer, A.: Computer simulation of morphogenetic equations, Lecture held at the Max Planck Institute, Tübingen, November 1973.

    Google Scholar 

  • Moore, E.F.: In Essays on Cellular Automata, ed. by A.W. Burks, University of Illinois Press, Chicago, 1970.

    Google Scholar 

  • Othmer, H.G. and Scriven, L.E.: Instability and dynamic pattern in cellular networks, J. theor. Biol. 32 ,507–537 (1971).

    Article  Google Scholar 

  • Rechenberg, I.: Evolutionsstrategie, Optimierung technischer Systeme nach Prinzipien der biologischen Evolution, Friedrich Frommann-Verlag (Günter Holzboog K.G.), Stuttgart-Bad Cannstatt, 1973.

    Google Scholar 

  • Rosen, R.: Discrete and continuous representations of metabolic models, In: Quant. Biol. Metabolism, ed. by A. Locker, pp. 24–32. Springer Verlag, Berlin-Heidelberg-New York, 1968.

    Google Scholar 

  • Rössler, O.E.: A system-theoretic model of biogenesis (in German), Z. Naturforsch 26b, 741–746 (1971).

    Google Scholar 

  • Rössler, O.E.: Design for autonomous chemical growth under different environmental constraints, Progr. Theor. Biol., 2 ,167–211 (1972c).

    Google Scholar 

  • Rössler, O.E.: A synthetic approach to exotic kinetics, with examples, These Proceedings (1974c).

    Google Scholar 

  • Rössler, O.E. and Hoffmann, D.: A chemical universal circuit, Fourth Intern. Congr. Biophysics, Moscow, August 1972, Abstracts 4 ,p. 49 (1972b).

    Google Scholar 

  • Seelig, F.F. and Rössler, O.E.: A chemical reaction flip-flop with one unique switching input, Z. Naturforsch 27b, 1441–1444 (1972).

    Google Scholar 

  • Shannon, C.E.: A symbolic analysis of relay and switching circuits, Trans. AIEE 57, 713–723 (1938).

    Google Scholar 

  • Ulam, S.M.: Random processes and transformations. In: Proc. Int. Congr. Mathematicians 1950, Vol. 2, pp. 264–275. Amer. Math. Society, Providence, Rhode Island, 1952.

    Google Scholar 

  • Ulam, S.M.: In Essays in Cellular Automata, ed. by A.W. Burks, University of Illinois Press, Chicago, 1970.

    Google Scholar 

  • Von Neumann, J.: Nonlinear capacitance or inductance switching, amplifying and memory organs, U.S. Patent No. 2, 815, 488, issued December 3, 1957.

    Google Scholar 

  • Ware, W.H.: Digital Computer Technology and Design, Vol.11: Circuits and Machine Design, p. 9:60. Wiley, New York, 1963.

    MATH  Google Scholar 

  • Wigington, R.L.: A new concept in computing, Proc. IRE 47 ,516 (1959) (Cited after Landauer & Woo, 1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Rössler, O.E. (1974). Chemical Automata in Homogeneous and Reaction-Diffusion Kinetics. In: Conrad, M., Güttinger, W., Dal Cin, M. (eds) Physics and Mathematics of the Nervous System. Lecture Notes in Biomathematics, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80885-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80885-2_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-07014-6

  • Online ISBN: 978-3-642-80885-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics