Inhibitors of DNA Synthesis

  • Helga Kersten
  • Walter Kersten
Part of the Molecular Biology, Biochemistry and Biophysics book series (MOLECULAR, volume 18)


The mechanism of DNA replication in prokaryotic and even more in eukaryotic cells is a complex process in which apparently more than one DNA polymerizing enzyme system is involved.


Nalidixic Acid Strand Scission Aziridine Ring Lysogenic Phage Cesium Chloride Density Gradient Centrifugation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ALBERTS, B., BARRY, J., HAMANIBA, H., MORAN, L., MACE, D.: Some proteins of the T bacteriophage, DNA replication apparatus. IUB Ninth Int. Congress of Biochemistry, Stockholm 1973, Handbook 3 Sa3.Google Scholar
  2. CAIRNS, J.: DNA synthesis. The Harvey Lectures Series, Vol. 66, p. 1–18. New York-London: Academic Press 1972.Google Scholar
  3. GANESAN, A.T.: Studies on in vitro replication of B. subtilis DNA. Cold Spr. Harb. Symp. quant. Biol. 23 45–57 (1968).Google Scholar
  4. GANESAN, A.T.: Adenosine triphosphate-dependent synthesis of biologically active DNA by azide-poisoned bacteria. Proc. nat. Acad. Sci. (Wash.) 68, 1296–1300 (1971).Google Scholar
  5. HOUCK, J.C., IRAUSQUIN, H., LEIKIN, S.: Lymphocyte DNA synthesis inhibition. Science 173, 1139–1141 (1971).PubMedGoogle Scholar
  6. KNIPPERS, R.: DNA polymerase II. Nature 228, 1050–1053 (1970).PubMedGoogle Scholar
  7. KNIPPERS, R., STRTLING, W.: The DNA replicating capacity of isolated E. coli cell wall-membrane complexes. Nature 226, 713–717 (1970).PubMedGoogle Scholar
  8. KORNBERG, A.: Active center of DNA polymerase. Science 163 1410–1418 (1969).PubMedGoogle Scholar
  9. KORNBERG, T., GEFTER, M.L.: DNA synthesis in cell-free extracts of a DNA polymerase-defective mutant. Biochem. Biophys. Res. Commun. 40, 1348–1355 (1970).PubMedGoogle Scholar
  10. MOSES, R.E., RICHARDSON, C.C.: A new polymerase activity of Escherichia coli. I. Purification and properties of the activity present in E. coli polAl. Biochem. biophys. Res. Common. 4JL, 1557–1564 (1970).Google Scholar
  11. OKAZAKI, R., OKAZAKI, T., SAKABE, K., SUGIMOTO, K., KAINUMA, R., SUGINO, A., IWATSUKI, N.: In vivo mechanism of DNA chain growth. Cold Spr. Harb. Symp. quant. Biol. 33 129–143 (1968).Google Scholar
  12. OKAZAKI, R., SUGIMATO, K., OKAZAKI, T., IMAE, Y., SUGINO, A.: DNA chain growth: In vivo and in vitro synthesis in a DNA polymerase- negative mutant of E. coli. Nature 228, 223–226 (1970).PubMedGoogle Scholar
  13. OKAZAKI, R., SUGINO, A., HIROSE, S., TAMANOI, F.: Discontinous replication of DNA: Structure and metabolism of RNA-linked DNA fragments. IUB Ninth Int. Congress of Biochemistry, Stockholm 1973, Handbook 3 Sa4.Google Scholar
  14. RICHARDSON, C.C.: Reported in: Wisconsin Symposium on DNA synthesis. Nature New Biology 239, 159–160 (1972).Google Scholar
  15. CAMPBELL, J.L., SOLL, L., RICHARDSON, C.C.: Isolation and partial characterization of a mutant of Escherichia coli deficient in DNA polymerase II. Proc. nat. Acad. Sci. (Wash.) 69, 2090–2094 (1972).Google Scholar
  16. SCHALLER, H., OTTO, B., NÜSSLEIN, V., RUF, J., HERRMANN, R., BONHOEFFER, F.: Deoxyribonucleic acid replication in vitro. J. molec. Biol. 63, 183–200 (1972).PubMedGoogle Scholar
  17. SMITH, D.W., SCHALLER, H.E., BONHOEFFER, F.J.: DNA Synthesis in vitro. Nature 226, 711–713 (1970).PubMedGoogle Scholar

A. Mitomycin

  1. ALBACH, R.A., SHAFFER, J.G.: Effect of mitomycin C metabolism on thymidine-methyl-H3 utilization by Entamoeba histolytica in CLG medium. J. Protozool. 1 (Suppl.) 19, 60a (1967).Google Scholar
  2. ARORA, O.P., SHAH, V.C., RAO, S.R.V.: Studies on micronuclei induced by mitomycin C in the root cells of Vicia faba. Expt. Cell Res. 56, 443–448 (1969).Google Scholar
  3. BASU, S.K., CHAKRABARTY, A.M., ROY, S.C.: Enhancement of catabolite repression by mitomycin C in the induced synthesis of 8-galactosidase. Biochim. biophys. Acta (Amst.) 108, 713–716 (1965).Google Scholar
  4. BEUKERS, R., BERENDS, A.: Isolation and identification of the irradiation product of thymine. Biochim. biophys. Acta (Amst.) 41, 550–551 (1960).Google Scholar
  5. BOYCE, R.P., HOWARD-FLANDERS, P.: Genetic control of DNA breakdown and repair in E. coli K-12 treated with mitomycin C or ultraviolet light. Z. Vererbungsl. 95, 345–350 (1964).PubMedGoogle Scholar
  6. BRUCHOVSKY, N., OWEN, A.A., BECHER, A.J., TILL, J.E.: Effects of vinblastine on the proliferative capacity of L cells and their progress through the division cycle. Cancer Res. 25, 1232–1237 (1965).PubMedGoogle Scholar
  7. CARTER, S.K.: Mitomycin C. Cancer Chemother. Rep. Suppl. 1, 99–114 (1968).Google Scholar
  8. CHEER, S., TCHEN, T.T.: Effect of mitomycin C on the synthesis of induced ß-galactosidase in E. coli. Biochem. biophys. Res. Comm. 9, 271–274 (1962).PubMedGoogle Scholar
  9. CHEER, S., TCHEN, T.T.: Effect of mitomycin C on induced enzyme synthesis in E. coli. Bacteriol. Proc. 63, 38 (1963).Google Scholar
  10. COHEN, M.M., SHAW, M.W.: Effects of mitomycin C on human chromosomes. J. Cell Biol.23 386–395 (1964).PubMedGoogle Scholar
  11. COLES, N.W., GROSS, R.: The effect of mitomycin C on the induced synthesis of penicillinase in Staphylococcus aureus. Biochem. biophys. Res. Com. 20, 366–371 (1965).PubMedGoogle Scholar
  12. CONSTANTOPOULOS, G., TCHEN, T.T.: Enhancement of mitomycin C induced breakdown of DNA by inhibitors of protein synthesis. Biochim. biophys. Acta (Amst.) 80, 456–462 (1964).Google Scholar
  13. COOPER, S., ZINDER, N.D.: The growth of an RNA bacteriophage: The role of DNA synthesis. Virology 11, 405–411 (1962).Google Scholar
  14. CUMMINGS, D.J.: Macromolecular synthesis during synchronous growth of E. coli B/r. Biochim. biophys. Acta (Amst.) 95, 341–350 (1965).Google Scholar
  15. De BOER, D., DIETZ, A., LUMMIS, N.E., SAVAGE, G.M.: Porfiromyein, a new antibiotic. I. Discovery and biological activities. In: Antimicrob. Agents Annual 1960, p. 17–22. New York: Plenum Press 1961.Google Scholar
  16. DeWITT, W., HELSINKI, D.R.: Characterization of colicinogenic factor Ei from a non-induced and a mitomycin C-induced Proteus strain. J. molec. Biol. 13, 692–703 (1965).Google Scholar
  17. DJORDJEVIC, B., KIM, J.H.: Different lethal effects of mitomycin C and actinomycin D during the division cycle of HeLa cells. J. Cell Biol. 38, 477–482 (1968).PubMedGoogle Scholar
  18. DRISKELL-ZAMENHOF, P.J., ADELBERG, E.Ä.: Studies on the chemical nature and size of sex factors of E. coli K12− J. molec. Biol. 6, 483–497 (1963).Google Scholar
  19. FREDERICQ, P.: Colicins. Ann. Rev. Microbiol. 11, 7–22 (1957).Google Scholar
  20. FREESE, E.: Hereditary DNA alterations. Angew. Chemie Int. Ed. 8, 12–20 (1969).Google Scholar
  21. GERMAN, J., LaROCK, J.: Chromosomal effects of mitomycin, a potential recombinogen in mammalian cell genetics. Tex. Rep. Biol. Med. 27, 409–418 (1969).PubMedGoogle Scholar
  22. GRIBNAU, A.G.M., VELDSTRA, H.: The influence of mitomycin C on the induction of crown-gall tumors. FEBS Letters 3, 115–117 (1969).PubMedGoogle Scholar
  23. GRULA, E.A., SMITH, G.L., GRULA, M.: Cell division in Erwinia: Inhibition of nuclear body division in filaments grown in penicillin or mitomycin C. Science 161, 164 (1968).PubMedGoogle Scholar
  24. HANAWALT, P.C.: Cellular recovery from photochemical damage. In: Photophysiology, Vol. 4 (A.C. GIESE, Ed.), p. 203–251. New York: Academic Press 1968.Google Scholar
  25. HATA, T., SANO, Y., SUGAWARA, R., MATSUMAE, A., KANAMORI, K., SHIMA, T., HOSHI, T.: Mitomycin, a new antibiotic from Streptomyces. J. Antibiot. (Tokyo) Ser. A 9, 141–146 (1956).Google Scholar
  26. HATA, T., NOMURA, S., UMEZAWA, I.: Antitumour activity of antibiotic G-253. In: Antimicr. Agents and Chemother. 1966, 543–545.Google Scholar
  27. HOWARD-FLANDERS, P.: DNA repair. Ann. Rev. Biochem. 37, 175–200 (1968).PubMedGoogle Scholar
  28. IIJIMA, T., HAGAWARA, A.: Mutagenic action of mitomycin C on E. coli. Nature J 85, 395–396 (1960).Google Scholar
  29. IONESCO, H., RYTER, A., SCHAEFFER, P.: Sur une bacteriophage herberge par la souche Marburg de Bacillus subtilis. Ann. Inst. Pasteur 107, 764–776 (1964).Google Scholar
  30. IYER, V.N., SZYBALSKI, W.: A molecular mechanism of mitomycin action: Linking of complementary DNA strands. Proc. nat. Acad. Sci. (Wash.) 50, 355–362 (1963).Google Scholar
  31. IYER, V.N., SZYBALSKI, W.: Mitomycins and porfiromycins: Chemical mechanism of activation and cross-linking of DNA. Science 145, 55–58 (1964).PubMedGoogle Scholar
  32. KATO, N., OKABAYASHI, K., MIZUNO, D.: The degradation of ribosomal RNA in E. coli by mitomycin C and AF-5 preferential inhibitors of DNA synthesis. J. Biochem. (Tokyo) 67, 175–184 (1970).Google Scholar
  33. KERSTEN, H.: Action of mitomycin C on nucleic acid metabolism in tumour and bacterial cells. Biochim. biophys. Acta (Amst.) 55, 558–560 (1962a).Google Scholar
  34. KERSTEN, H.: Zur Wirkungsweise von Mitomycin C. I. Einfluß von Mitomycin C auf den Desoxyribonucleinsäure-Abbau in ruhenden Bakterien. Hoppe-Seylers Z. physiol. Chem. 329, 31–39 (1962b).PubMedGoogle Scholar
  35. KERSTEN, H., KERSTEN, W.: Zur Wirkungsweise von Mitomycin C. II. Einfluß von Mitomycin, Chloramphenicol und Mg2+ auf den RNA- und DNA-Stoffwechsel in Bakterien. Hoppe-Seylers Z. physiol. Chem. 334, 141–153 (1963).PubMedGoogle Scholar
  36. KERSTEN, H., KERSTEN, W., LEOPOLD, G., SCHNIEDERS, B.: Effect of mitomycin C on DNAase and RNA in E. coli. Biochim. biophys. Acta (Amst.) 80, 521–523 (1964).Google Scholar
  37. KERSTEN, H., KERSTEN, W.: Inhibitors acting on DNA and their use to study DNA replication and repair. In: Inhibitor Tools in Cell Research. (Th. BÜCHNER, H. SIES, Eds.), p. 11–31. Berlin-Heidelberg-New York: Springer 1969.Google Scholar
  38. KERSTEN, H., THEMANN, H.: Morphologische und biochemische Veränderungen an Ascites-Tumorzellen der Maus nach Einwirkung von Mitomycin C. Z. ges. exp. Med. 136, 209–220 (1962).PubMedGoogle Scholar
  39. KIM, J.H., GELBARD, A.S., PEREZ, A.G., EIDINOFF, M.L.: Effect of 5-bromo deoxyuridine on nucleic acid and protein synthesis and viability in HeLa cells. Biochim. biophys. Acta (Amst.) 134, 388–394 (1967).Google Scholar
  40. KIT, S., PIEKARSKI, L.J., DUBBS, D.R.: Effects of 5-fluorouracil, actinomycin D and mitomycin C on the induction of thymidine kinase by vaccinia-infected L-cells. J. molec. Biol. 7, 497–510 (1963).PubMedGoogle Scholar
  41. KNOLLE, P., KAUDEWITZ, F.: Degree of host control on RNA production of an RNA phage. Abstracts, VI. Internat. Congr. Biochem. Vol. 3, p. 234 (1964).Google Scholar
  42. KORN, D., WEISSBACH, A.: Thymineless induction in E. coli. Biochim. biophys. Acta (Amst.) 61, 775–790 (1962).Google Scholar
  43. LAWLEY, P.D., BROOKES, P.: Further studies on the alkylation of nucleic acids and their constituent nucleotides. Biochem. J. 89, 127–138 (1963).PubMedGoogle Scholar
  44. LAWLEY, P.D., BROOKES, P.: Interstrand cross-linking of DNA by difunctional alkylating agents. J. molec. Biol. 215, 143–160 (1967).Google Scholar
  45. LEIN, J., HEINEMANN, B., GOUREVITCH, A.: Induction of lysogenic bacteria as a method of detecting potential antitumour agent. Nature 196, 783–784 (1962).PubMedGoogle Scholar
  46. LEMMEL, E.M., GOOD, R.A.: Tolerance of cell mediated immune responses after in vitro treatment of competent cells with mitomycin C. Nature 221, 1164–1165 (1969).PubMedGoogle Scholar
  47. LEOPOLD, G., SCHNIEDERS, B., KERSTEN, H., KERSTEN, W.: The effect of mitomycin C on ribosomes and soluble ribonucleic acid in Escherichia coli. Biochem. Z. 343, 423–432 (1965).PubMedGoogle Scholar
  48. LERMAN, M.I., BENYUMOVICH, M.S.: Effect of mitomycin C on protein synthesis in human neoplastic cell lines. Nature 206, 1231–1232 (1965).PubMedGoogle Scholar
  49. LEVINE, M: Effect of mitomycin C on interactions between temperate phages and bacteria. Virology J 3, 493–498 (1961).Google Scholar
  50. LINDQVIST, B., SINSHEIMER, R.L.: The use of mitomycin C as a selective inhibitor of host DNA synthesis in 174-infected HCr cells. Fed. Proc. 25, 651 (1966).Google Scholar
  51. LIPSETT, M.N., WEISSBACH, A.: The site of alkylation of nucleic acids by mitomycin. Biochemistry 4, 206–211 (1965).Google Scholar
  52. MAGEE, W.E., MILLER, O.V.: Dissociation of the synthesis of host and viral deoxyribonucleic acid. Biochim. biophys. Acta (Amst.) 55, 818–826 (1962).Google Scholar
  53. MATSUMOTO, I., KOZAKA, M., TAKAGI, Y.: Analysis of the acid-soluble deoxyribosidic compounds accumulated in mitomycin C treated bacteria. J. Biochemistry (Tokyo) 10, 653–659 (1966).Google Scholar
  54. MOORE, G.E., BROSS, I.D.J., AUSMAN, R., NADLER, S., JONES, R., Jr., SLACK, N., RIMM, A.A.: Effects of mitomycin C in 346 patients with advanced cancer. Cancer Chemother. Rep. J52, 675–684 (1968).Google Scholar
  55. MURAKAMI, H.: Electron aspects of the mode of action of the mitomycin molecule. J. theor. Biol. J 10, 236–250 (1966).Google Scholar
  56. NAKATA, Y., NAKATA, K., SAKAMOTO, Y.: On the action mechanism of mitomycin C. Biochem. Biophys. Res. Commun. 6, 339–343 (1962).Google Scholar
  57. NATORI, S., HORIGUCHI, T., MIZUNO, D.: Absence’of ribonuclease in Alcaligenes faecalis and a possible mechanist of RNA degradation in this bacterium. Biochim. Biophys. Acta (Amst.) 134, 337–346 (1967).Google Scholar
  58. NIITANI, H., SUZUKI, A., SHIMOYAMA, M., KIMURA, K.: Effect of mitomycin C injection on lysosomal enzymic activities of Yoshida ascites sarcoma. Gann 55, 447–449 (1964).PubMedGoogle Scholar
  59. NOWELL, P.C.: Mitotic inhibition and chromosome damage by mitomycin in human leucocyte cultures. Exp. Cell Res. 33, 445–449 (1964).PubMedGoogle Scholar
  60. OKAMOTO, K., MUDD, J.A., MANGAN, J., HUANG, W.M., SUBBAIAH, T.V., MARMUR, J.: Properties of the defective phage of B. subtilis. J. molec. Biol. 34, 413–428 (1968a).PubMedGoogle Scholar
  61. OKAMOTO, K., MUDD, J.A., MARMUR, J.: Conversion of B. subtilis DNA to phage DNA following mitomycin C induction. J. molec. Biol. 34 429–437 (1968b).PubMedGoogle Scholar
  62. OTSUJI, N.: The effect of glucose on the induction of lambda phage formation by mitomycin C. Biken’s J. 4, 235–241 (1961).Google Scholar
  63. OTSUJI, N.: DNA synthesis and lambda phage development in a lysogenic strain of E. coli K12. Biken’s J. 5, 9–19 (1962).Google Scholar
  64. PAPIRMEISTER, B., DAVISON, C.L.: Unbalanced growth and latent killing of E. coli following exposure to sulfur mustard. Biochim. Biophys. Acta (Mist.) 103, 70–92 (1965).Google Scholar
  65. PARKIN, J.L., CHIGA, M.: Dissociation of DNA synthesis and mitosis by mitomycin Cin regenerating rat liver. Fed. Proc. 25, 480 (1966).Google Scholar
  66. PATRICK, J.B., WILLIAMS, R.P., MEYER, W.E., FULMOR, W., COSULICH, D.B., BROSCHARD, R.W, WEBB, J.S.: Aziridinomitosenes: A new class of antibiotics related to the mitomycins. J. Amer. chem. Soc. 86, 1889–1890 (1964).Google Scholar
  67. RAUTH, A.M.: Evidence for the dark reactivation of mitomycin C antiinfection damage in mouse cells. Ned. T. Geneesk. 110, 101 (1966).Google Scholar
  68. REICH, E., FRANKLIN, R.M.: Effect of mitomycin C on the growth of some animal viruses. Proc. Nat. Acad. Sci. (Wash.) 47, 1212–1217 (1961).Google Scholar
  69. REINMER, M.V., YOSHIDA, S.: Differential depression of DNA synthesis in the isolated embryo. Teratology, 221 (1968).Google Scholar
  70. ROSS, V.C., SOLYMOSI, I.: Induction of thymidine-kinase in L-132 cells: Dependence of protein synthesis and time of mitomycin action. Fed. Proc. 26, 291 (1967).Google Scholar
  71. ROTT, R., SABER, S., SCHOLTISSEK, C.: Effect on myxovirus of mitomycin C, actinomycin D and pretreatment of the host cell with ultraviolet light. Nature 205, 1187–1190 (1965).Google Scholar
  72. SAKAUCHI, G., DeWITT, C.W.: Immunosuppressive activity of mitomycin C. Transplantation 5, 248–255 (1967).Google Scholar
  73. SCHWARTZ, H.S., SODERGREN, J.E., PHILIPS, F.S.: Mitomycin C: Chemical and biological studies on alkylation. Science 142, 1181–1183 (1963).PubMedGoogle Scholar
  74. SEAMAN, E., TARMY, E., MARMUR, J.: Inducible phages of B. subtilis. Biochemistry 3, 607–613 (1964).PubMedGoogle Scholar
  75. SETLOW, R.B.: The photochemistry, photobiology and repair of polynucleotides. Progr. Nucl. Acid. Res. 8, 257–295 (1968).Google Scholar
  76. SHATKIN, A.J., REICH, E., FRANKLIN, R.M., TATUM, E.L.: Effect of mitomycin C on mammalian cells in culture. Biochim. biophys. Acta (Amst.) 55, 277–289 (1962).Google Scholar
  77. SHAW, M.W., COHEN, M.M.: Chromosome exchanges in human leucocytes induced by mitomycin C. Genetics 51, 181–190 (1965).PubMedGoogle Scholar
  78. SHIBA, S., TERAWAKI, A., TAGUCHI, T., KAWAMATA, J.: Studies on the effect of mitomycin C on nucleic acid metabolism in E. coli strain B. Biken’s J. 1, 179–193 (1958).Google Scholar
  79. SHIIO, T., WEINBAUM, G., TAKAHASHI, H., MARUO, B.: Chromatographic analysis of nucleotidic compounds in Bacillus subtilis. J. Gen. Appl. Microbiol. 8, 178–186 (1962).Google Scholar
  80. SINCLAIR, W.K.: Hydroxyurea: Differential lethal effects on cultured mammalian cells during the cell cycle. Science 150, 1729–1731 (1965).PubMedGoogle Scholar
  81. SINKUS, A.G.: Effects of mitomycin C on chromosomes in the human cell culture. Tsitologiya J 1, 933–940 (1969).Google Scholar
  82. SMITHKIELLAND, I.: The effect of mitomycin C on deoxyribonucleic acid and messenger ribonucleic acid in E. coli. Biochim. biophys. Acta (Amst.) 114, 254–263 (1966a).Google Scholar
  83. SMITHKIELLAND, I.: The effect of mitomycin C on ribonucleic acid synthesis in growing cultures of E. coli. Biochim. biophys. Acta (Amst.) J 19, 486–491 (1966b).Google Scholar
  84. STEIN, G.S., ROTHSTEIN, H.: Mitomycin C may inhibit mitosis by reducing “G 2 RNA synthesis. Curr. Mod. Biology 2 254–263 (1968).Google Scholar
  85. STICKLER, D.J., TUCKER, R.G., KAY, D.: Bacteriophage-like particles released from Bacillus subtilis after induction with hydrogen peroxide. Virology 2, 142–145 (1965).Google Scholar
  86. STRAUSS, B.S.: DNA repair mechanism and their relation to mutation and recombination. Curr. Top. Microbiol. Immunol. 44, 1–85 (1968).PubMedGoogle Scholar
  87. STUDZINSKI, G.P., COHEN, L.S.: Mitomycin C induced increases in the activities of the deoxyribonucleases of HeLa cells. Biochem. biophys. Res. Commun. 23, 506–512 (1966).PubMedGoogle Scholar
  88. STUDZINSKI, G.P., COHEN, L.S., ROSEMAN, J., SCHWEITZER, J. L.: Elevation of deoxyribcnuclease activities in HeLa cells treated with selective inhibitors of DNA synthesis. Biochem. biophys. Res. Commun. 25, 313–319 (1966).PubMedGoogle Scholar
  89. SUZUKI, H., KILGORE, W.W.: Mitomycin C effect on ribosomes of E. coli. Science J 46, 1585–1587 (1964).Google Scholar
  90. SZYBALSKI, W.: Special microbiological systems. II. Observation on chemical mutagenesis in microorganisms. Ann. N.Y. Acad. Sci. 76, 475–489 (1958).PubMedGoogle Scholar
  91. SZYBALSKI, W.: Chemical reactivity of chromosomal DNA as related to mutagenicity: Studies with human cell lines. Cold Spr. Harb. Symp. quant. Biol. 29, 151–159 (1964).Google Scholar
  92. SZYBALSKI, W., ARNESON, V.G.: Reductive activation and inactivation of mitomycin as studied with human and bacterial cell cultures. Molec. Pharmacol. 14, 202–204 (1965).Google Scholar
  93. SZYBALSKI, W., IYER, V.N.: Cross-linking of DNA by enzymatically or chemically activated mitomycins and porfiromycins, bifunctionally “alkylating” antibiotics. Fed. Proc. 23, 946–957 (1964).PubMedGoogle Scholar
  94. SZYBALSKI, W., IYER, V.N.: The mitomycins and porfiromycins. In: Antibiotics I (D. GOTTLIEB, P.D. SHAW, Eds.), pp. 211–245. Berlin-Heidelberg-New York: Springer 1967.Google Scholar
  95. TAKAGI, Y.: Action of mitomycin C.: Jap. J. Med. Sci. Biol. 16, 246–249 (1963).Google Scholar
  96. TAKENO, T., NAGATA, T., MIZUNOYA, T.: Photosuppression of mitomycin- induced lambda-phage development. Nature 218, 295–296 (1968).PubMedGoogle Scholar
  97. TEMIN, H.M., MIZUTANI, S.: RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 226, 1211–1213 (1970).PubMedGoogle Scholar
  98. TERAWAKI, A., GREENBERG, J.: Post-treatment breakage of mitomycin C induced cross-links in deoxyribonucleic acid of E. coli. Biochim. biophys. Acta (Amst.) 119, 54o-546 (1966).Google Scholar
  99. TERESHIN, I.M.: On mechanism of action of mitomycin C on genetic transformation in hemolytic streptococci. Antibiotiki J 4, 796–800 (1969).Google Scholar
  100. TOMASZ, M.: Novel assay of 7-alkylation of guanine residues in DNA application to nitrogen mustard, triethylenemelanine and mitomycin C. Biochim. biophys. Acta (Amst.) 213, 288–295 (1970).Google Scholar
  101. TSUKAMURA, M., TSUKAMURA, S.: Mutagenic effect of mitomycin C on Mycobacterium and its combined effect with ultraviolet irradiation. Jap. J. Microbiol. 6, 53–58 (1962).Google Scholar
  102. VIGIER, P., GOLDE, A.: Action de 1actinomycine D et de la mitomycine C sur le development du virus de Rous. C. R. Acad. Sci. (Paris) 258, 389–392 (1964a).Google Scholar
  103. VIGIER, P., GOLDE, A.: Effects of actinomycin D and mitomycin C on development of Rous sarcoma virus. Virology 23, 511–519 (1964b).PubMedGoogle Scholar
  104. VINCENT, P.C., REEVE, T.S., BRITTLE, N., NICHOLIS, A., RICHARDS, M.: The effect of cytotoxic drugs on serum albumin in the rat. Aust. J. expt. Biol. med. Sci. 45, 427–436 (1967).Google Scholar
  105. WACKER, A.: Molecular mechanisms of radiation effects. Progr. Nucl. Acid. Res. Mol. Biol. J 1, 369–399 (1963).Google Scholar
  106. WAKAKI, S., MARUMO, H., TOMIOKA, K., SHIMIZU, G., KATO, E., KAMADA, H., KUDO, S., FUJIMOTO, Y.: Isolation of new fractions of antitumour mitomycins. Antibiot. and Chemother. 228–240 (1958).Google Scholar
  107. WEBB, J.S., COSULICH, D.B., MOWAT, J.H., PATRICK, J.B., BROSCHARD, R.W., MEYER, W.E., WILLIAMS, R.P., WOLF, C.F., FULMOR, W., PIDACKS, C., LANCASTER, J.E.: The structures of mitomycin A, B and C, and porfiromycin. Part I. J. Amer. chem. Soc. 84, 3185–3187 (1962).Google Scholar
  108. WEISSBACH, A., LISIO, A.: Alkylation of nucleic acids by mitomycin C and porfiromycin. Biochemistry 4, 196–200 (1965).Google Scholar
  109. WHITE, H.L., WHITE, J.R.: The binding of porfiromycin to the deoxyribonucleic acid. J. Elisha Mitchell Sci. Soc. 8J, 37–42 (1965).Google Scholar

B. Streptonigrin

  1. BHUYAN, B.K., Phleomycin, xanthomycin, streptonigrin, nogalamycin and aurantin. In: Antibiotics, I. Mechanism of action. (D. GOTTLIEB, P.D. SHAW, Eds.), pp. 173–180. Berlin-Heidelberg-New York: Springer 1967.Google Scholar
  2. COHEN, M.M., SHAW, M.W., CRAIG, A.P.: Effects of streptonigrin on cultured human leucocytes. Proc. nat. Acad. Sci. (Wash.) 50, 16–24 (1963).Google Scholar
  3. HOCHSTEIN, P., LASZLO, J., MILLER, D.: A unique, dicumarol-sensitive, non-phosphorylating oxidation of DPNH and TPNH catalyzed by streptonigrin. Biochem. biophys. Res. Commun. 19, 289–295 (1965).PubMedGoogle Scholar
  4. IYER, V.N., SZYBALSKI, W.: Mitomycin and porfiromycin: Chemical mechanism of activation and cross-linking of DNA. Science 145, 55–58 (1964).PubMedGoogle Scholar
  5. LEVINE, M., BOTHWICK, M.: Action of streptonigrin on bacterial DNA metabolism and on induction of phage production in lysogenic bacteria. Virology 21, 568–579 (1963a).PubMedGoogle Scholar
  6. LEVINE, M., BOTHWICK, M.: Action of streptonigrin on genetic recombinations between bacteriophages. Proc. XI. Int. Congr. Genet. The Hague/Netherlands 1963b.Google Scholar
  7. MIZUNO, N.S.: Effects of streptonigrin on nucleic acid metabolism of tissue culture cells. Biochim. biophys. Acta (Amst.) 108, 394–403 (1965).Google Scholar
  8. MIZUNO, N.S., GILBOE, D.P.: Binding of streptonigrin to DNA. Biochim. biophys. Acta (Amst.) 224, 319–327 (1970).Google Scholar
  9. OLESON, J.J., CALDERELLA, L.A., MJOS, K.J., REITH, R.A., THIE, R.S., TOPLIN, I.: The effect of streptonigrin on experimental tumours. Antibiot. and Chemother. 11, 158–164 (1961).Google Scholar
  10. RADDING, C.M.: Uptake of tritiated thymidine by K-12 (X) induced by streptonigrin. Proc. XI. Int. Congr. Genet., The Hague/Netherlands 1963.Google Scholar
  11. RAO, K.V., CULLEN, W.P.: Streptonigrin, an antitumour substance. I. Isolation and characterization. Antibiotics Annu. 1959/60, pp. 950 to 953.Google Scholar
  12. RAO, K.V., BIEMANN, K., WOODWARD, R.B.: The structure of streptonigrin. J. Amer. chem. Soc. 85, 2532–2533 (1963).Google Scholar
  13. WHITE, H.L., WHITE, J.R.: Interaction of streptonigrin with DNA in vitro. Biochim. biophys. Acta (Amst.) 123, 648–651 (1966).Google Scholar
  14. WHITE, H.L., WHITE, J.R.: Lethal action and metabolic effects of streptonigrin on E. Coli. Molec. Pharmacol. 4, 549–565 (1968).Google Scholar
  15. WILSON, W.L., LABRA, C., BARRIST, E.: Preliminary observations on the use of streptonigrin as an antitumour agent in human beings. Antibiotic, and Chemother. 11, 147–150 (1961).Google Scholar

C. Sibiromycin

  1. BRAZHNIKOVA, M.G., KOVSHAROVA, I.N., KONSTANTINOVA, N.V., MESENTSEV, A.S., PROSHLJAKOVA, V.V., TOLSTYCH, I.V.: Chemical study on antitumour antibiotic sibiromycin. Antibiotiki J 5, 297–300 (1970).Google Scholar
  2. BRAZHNIKOVA, M.G., KONSTANTINOVA, N.V., MESENTSEV, A.S.: Sibiromycin: Isolation and characterization. J. Antibiot. (Tokyo) 25, 668–673 (1972).Google Scholar
  3. DUDNIK, Y.V., NETYKSA, E.M., VARIK, O.Y.: Increased antibacteria effect of bruneomycin and sibiromycin in cultures with impaired reparation of DNA. Antibiotiki 16, 487–491 (1971a).Google Scholar
  4. DUDNIK, Y.V., KARPOV, V.L., NETYKSA, E.M.: Sulphur-containing derivation of sibiromycin. Removal of sulphur on interaction with DNA. Antibiotiki 16, 6–8 (1971b).PubMedGoogle Scholar
  5. GAUSE, G.F., DUDNIK, Y.V.: Interaction of antitumour antibiotics with DNA: Studies on sibiromycin. Progr. Molec. Subcell. Biology 2, 33–39 (1969); Berlin-Heidelberg-New York: Springer 1969.Google Scholar
  6. GAUSE, G.F., DUDNIK, Y.V., NETYKSA, E.M., LAIKO, A.V., GAUSE, G.G.: Mechanism of action of sibiromycin. Antibiotiki 15, 867–871 (1970).Google Scholar
  7. GAUSE, G.G., DUDNIK, Y.V., DOLGILEVICH, S.M.: Suppression of nucleic acid synthesis by sibiromycin. Antibiotiki J 7, 413–419 (1972).Google Scholar

D. Phleomycin and E. Bleomycin

  1. ARGOUDELIS, A.D., BERGY, M.E., PYKE, T.R.: Zorbamycin and related antibiotics. I. Production, isolation and characterization. J. Antibiot. (Tokyo) 24, 543–557 (1971).Google Scholar
  2. BARRANCO, S.C., HUMPHREY, R.M.: The effect of bleomycin on survival and cell progression on Chinese hamster cells in vitro. Cancer Res. 31, 1218–1223 (1971).PubMedGoogle Scholar
  3. BRADNER, W.T., PINDELL, H.M.: Antitumour properties of phleomycin. Nature 196, 682–683 (1962).PubMedGoogle Scholar
  4. BRADNER, W.T., PINDELL, M.H.: Strain specificity of stimulated regression of sarcoma 180. Cancer Res. J 25, 859–564 (1965).Google Scholar
  5. DJORDJEVIC, B., KIM, J.H.: Lethal effect of phleomycin in different stages of the division cycle of HeLa cells. Cancer Res. 27, 2255 to 2260 (1967).PubMedGoogle Scholar
  6. ENDO, H.: Qualitative difference between bleomycin and radiation effects on cell viability. J. Antibiot. (Tokyo) 23, 508–510 (1970).Google Scholar
  7. FALASCHI, A., KORNBERG, A.: Phleomycin, an inhibitor of DNA polymerase. Fed. Proc. 23, 940–945 (1964).PubMedGoogle Scholar
  8. FUJIWARA, Y., KONDO, T.: Strand-scission of HeLa cell deoxyribonuclei acid by bleomycin in vitro and in vivo. Biochem. Pharmacol. 22, 323–333 (1973).PubMedGoogle Scholar
  9. GORMAN, T., PIETSCH, P.: Strategy for crystallpgraphic analysis of phleomycin-DNA complexes: Fourier transforms: Physiol. Chem. Phys. J 1, 312–316 (1969).Google Scholar
  10. GRIGG, G.W.: Induction of DNA breakdown and death in E. coli by phleo mycin. Its association with dark-repair processes. Mol. gen. Genet. 104, 1–11 (1969).PubMedGoogle Scholar
  11. GRIGG, G.W.: Amplification of phleomycin induced death and DNA breakdown by caffeine in E. coli. Molec. gen. Genet. 107, 162–172 (1970).PubMedGoogle Scholar
  12. HAIDLE, C.W.: Fragmentation of deoxynucleic acid by bleomycin. Molec. Pharmacol. 645–652 (1971).Google Scholar
  13. HAIDLE, C.W., WEISS, K.K., MACE, M.L., Jr.: Induction of bacteriophage by bleomycin. Biochem. biophys. Res. Commun. 48, 1179–1184 (1972).PubMedGoogle Scholar
  14. HECHT, T., SUMMERS, D.F.: Effect of phleomycin on poliovirus RNA replication. Virology 40, 441–447 (1970).PubMedGoogle Scholar
  15. HOTTA, Y., STERN, H.: Action of phleomycin on meiotic cells. Cancer Res. 29, 1699–1706 (1969).PubMedGoogle Scholar
  16. IKEKAWA, T., IWAMI, F., HIRANAKA, H., UMEZAWA, H.: Separation of phleomycin components and their properties. J. Antibiot. (Tokyo) Ser. A 11, 194–199 (1964).Google Scholar
  17. ISHIZUKA, M., TAKAYAMA, H., TAKEUCHI, T., UMEZAWA, H.: Studies on antitumour activity, antimicrobial activity and toxicity of phleomycin. J. Antibiot. (Tokyo) Ser. A 1 260–271 (1966).Google Scholar
  18. ISHIZUKA, M., TAKAYAMA, H., TAKEUCHI, T., UMEZAWA, H.: Activity and toxicity of bleomycin. J. Antibiot.(Tokyo) Ser. A 20, 15–24 (1967).Google Scholar
  19. ITO, Y., OHASHI, Y., EGAWA, Y., YAMAGUCHI, T., FURUMAI, T., ENOMOTO, K., OKUDA, T.: Antibiotica YA 56, a new family of phleomycin-bleomycin group antibiotics. J. Antibiot. (Tokyo) 24, 727–731 (1971).Google Scholar
  20. IWATA, A., CONSIGLI, R.H.: Effect of phleomycin on polyoma virus synthesis in mouse embryo cells. J. Virol.7, 29–40 (1971).PubMedGoogle Scholar
  21. KAJIWARA, K., KIM, U.H., MUELLER, G.C.: Phleomycin, an inhibitor of replication of HeLa cells. Cancer Res. 26, 233–236 (1966).PubMedGoogle Scholar
  22. KATZ, S.: The reversible reaction of Hg(II) and double-stranded polynucleotides. A step-function theory and its significance. Biochim. biophys. Acta (Amst.) 68, 250–253 (1963).Google Scholar
  23. KIHLMAN, B.A., ODMARK, G., HARTLEY, B.: Studies on the effects of phleomycin on chromosome structure and nucleic acid synthesis in Vicia faba. Mutation Res. 5, 783–790 (1967).Google Scholar
  24. KOCH, G.: Differential effect of phleomycin on the infectivity of poliovirus and poliovirus-induced ribonucleic acids. J. Virol. 8, 28–34 (1971).PubMedGoogle Scholar
  25. KOYAMA, G., NAKAMURA, H., MURAOKA, Y., TAKITA, T., MAEDA, K., UMEZAWA, H.: The chemistry of bleomycin. II. The molecular and crystal structure of a sulfur-containing chromophoric amino acid. Tetrahedron Letters pp. 4635–4638 (1968).Google Scholar
  26. KRUEGER, W.C., PSCHIGODA, L.M., REUSSER, F.: Interactions of DNA with zorbamycin, phleomycin and bleomycin; ultraviolet absorption and circular dichroism measurements. J. Antibiot. (Tokyo) 26, 424–428 (1973).Google Scholar
  27. MAEDA, K., KOSAKA, H., YAGISHITA, K., UMEZAWA, H.: A new antibiotic, phleomycin. J. Antibiot. (Tokyo) Ser. A 1 82–85 (1956).Google Scholar
  28. MATTINGLY, E.: Induction of chromosome and chromatid-type aberrations by phleomycin. Mutation Res. 4, 51–57 (1966).Google Scholar
  29. MIYAKI, M., ONO, T., UMEZAWA, H.: Inhibition of ligase reaction by bleomycin. J. Antibiot. (Tokyo) 24, 587–592 (1971).Google Scholar
  30. MÜLLER, W.E.G., YAMAZAKI, Z., ZAHN, R.K.: Bleomycin, a selective inhibitor of DNA-dependent DNA polymerase from oncogenic RNA virus. Biochem. biophys. Res. Commun. 46, 1667–1673 (1972a).PubMedGoogle Scholar
  31. MÜLLER, W.E.G., YAMAZAKI, Z., BRETER, H.J., ZAHN, R.K.: Action of bleomycin on DNA and RNA. Europ. J. Bidchem. 31, 518–525 (1972b).Google Scholar
  32. MÜLLER, W.E.G., YAMAZAKI, Z., ZÖLLNER, J.-E., ZAHN, R.K.: Action of bleomycin on programmed synthesis. Influence on DNA and RNA nucleases. FEBS Letters 3J, 217–221 (1973).Google Scholar
  33. MURAOKA, Y., TAKITA, T., MAEDA, K., UMEZAWA, H.: Chemistry of bleomycin. IV. The structure of amino component II of bleomycin A2. J. Antibiot. (Tokyo) 23, 252–253 (1970).Google Scholar
  34. MURAOKA, Y., TAKITA, T., MAEDA, K., UMEZAWA, H.: Chemistry of bleomycin. VI-. Selective cleavage of bleomycin A2 by N-bromosuccinimide. J. Antibiot. (Tokyo) 25, 185–186 (1972).Google Scholar
  35. NAGAI, K., SUZUKI, H., TANAKA, N., UMEZAWA, H.: Decrease of melting temperature and single strand scission of DNA by bleomycin in the presence of hydrogen peroxide. J. Antibiot. (Tokyo) 22, 624–628 (1969a).Google Scholar
  36. NAGAI, K., YAMAKI, H., SUZUKI, H., TANAKA, N., UMEZAWA, H.: The combined effects of bleomycin and sulfhydryl compounds on the thermal denaturation of DNA. Biochim. biophys. Acta (Amst.) 179, 165 to 171 (1969b).Google Scholar
  37. OHKI, M., TOMIZAWA, J.-I.: Assymetric transfer of DNA strands in bacterial conjugation. Cold Spr. Harb. Symp. quant. Biol. 33, 651–658 (1968).Google Scholar
  38. OMOTO, S., TAKITA, T., MAEDA, K., UMEZAWA, H., UMEZAWA, S.: The chemistry of bleomycin. VIII. The structure of the sugar moiety of bleomycin A2. J. Antibiot. (Tokyo) 25, 752–754 (1972).Google Scholar
  39. PIETSCH, P.: Reactions of phleomycin and DNA. J. Cell Biol. 31, 68A to 87A (1966).Google Scholar
  40. PIETSCH, P.: Differences in DNA synthesis as reflected in variations in the acute inhibition of replication by the antibiotic phleomycin. Anat. Rec. 157, 301–301 (1967).Google Scholar
  41. PIETSCH, P.: Structural events in DNA in transcription and replication: the influence of histones on in vitro reactions of actinomycin-D and phleomycin-909. Cytobios 1 375–391 (1969).Google Scholar
  42. PIETSCH, P., CORBETT, C.: Competitive effects of phleomycin and mercuric chloride in vivo. Nature 219, 933–934 (1968).PubMedGoogle Scholar
  43. PIETSCH, P., GARRETT, H.: Primary site of reaction in the in vitro complex of phleomycin in DNA. Nature 219, 488–489 (1968).PubMedGoogle Scholar
  44. PIETSCH, P., GARRETT, H.: Phleomycin: evidence of in vivo binding to DNA. Cytobios 1 7–15 (1969a).Google Scholar
  45. PIETSCH, P., GARRETT, H.: Phleomycin induced changes in the ultra structure of DNA. Biophys. J. 9A, 126 (1969b).Google Scholar
  46. PIETSCH, P., McCOLLISTER, S.B.: Replication and the activation of muscle differentiation. Nature 208, 1170–1173 (1965).PubMedGoogle Scholar
  47. PITTS, J., SINSHEIMER, R.L.: Effect of phleomycin on replication of bacteriophage $ X 174. J. molec. Biol. 15, 676–680 (1966).PubMedGoogle Scholar
  48. SAUNDERS, P.P., SCHULTZ, G.A.: Mechanism of action of bleomycin-I. Bacterial growth studies. Biochem. Pharmacol. 21, 1657–1666 (1972).PubMedGoogle Scholar
  49. SHIRAKAWA, I., AZEGAMI, M., ISHII, S., UMEZAWA, H.: Reaction of bleomycin with DNA. Strand scission of DNA in the absence of sulfhydryl or peroxide compounds. J. Antibiot. (Tokyo) 24, 761–766 (1971).Google Scholar
  50. SUZUKI, H., NAGAI, K., AKUTSU, E., YAMAKI, H., TANAKA, N., UMEZAWA, H.: On the mechanism of action of bleomycin. Strand scission of DNA caused by bleomycin and its binding to DNA in vitro. J. Antibiot. (Tokyo) 23, 473–480 (1970).Google Scholar
  51. TAKITA, T.: Studies on purification and properties of phleomycin. J. Antibiot. (Tokyo) Ser. A J 2, 285–289 (1959).Google Scholar
  52. TAKITA, T., MAEDA, K., UMEZAWA, H., OMOTO, S., UMEZAWA, S.: Chemistry of bleomycin. III. The sugar moieties of bleomycin A2. J. Antibiot. (Tokyo) Ser. A 22, 237–239 (1969).Google Scholar
  53. TAKITA, T., MURAOKA, Y., MAEDA, K., UMEZAWA, H.: Chemical studies on bleomycin. I. The acid hydrolysis products of bleomycin A2. J. Antibiot. (Tokyo) 21, 79–80 (1968).Google Scholar
  54. TAKITA, T., MURAOKA, Y., OMOTO, S., KOYAMA, G., FUJII, A., MAEDA, K., UMEZAWA, H.: Chemical studies on an antitumour antibiotic, bleomycin A2. In: Progr. Antimicrob. Agent and Anticancer Chemotherapy, Vol. II, pp. 1031–1036. Baltimore/Maryland-Manchester/England: University Park Press 1970.Google Scholar
  55. TAKITA, T., MURAOKA, Y., FUJII, A., ITOH, H., MAEDA, K., UMEZAWA, H.: The structure of the sulfur-containing chromophore of phleomycin, and chemical transformation of phleomycin to bleomycin. J. Antibiot. (Tokyo) 25, 197–199 (1972a).Google Scholar
  56. TAKITA, T., MURAOKA, Y., YOSHIOKA, T., FUJII, A., MAEDA, K., UMEZAWA, H.: The chemistry of bleomycin. IX. The structures of bleomycin and phleomycin. J. Antibiot. (Tokyo) 25, 755–758 (1972b).Google Scholar
  57. TAKITA, T., YOSHIOKA, T., MURAOKA, Y., MAEDA, K., UMEZAWA, H.: Chemistry of bleomycin. V. Revised structure of an amine component of bleomycin A2. J. Antibiot. (Tokyo) 2A 795–796 (1971).Google Scholar
  58. TANAKA, N., YAMAGUCHI, H., UMEZAWA, H.: Mechanism of action of phleomycin, a tumour-inhibitory antibiotic. Biochem. biophys. Res. Commun. 10, 171–174 (1963).Google Scholar
  59. TERASIMA, T., UMEZAWA, H.: Lethal effect of bleomycin on cultured mammalian cells. J. Antibiot. (Tokyo) 23, 300–304 (1970).Google Scholar
  60. TERASIMA, T., YASUKAWA, M., UMEZAWA, H.: Breaks and rejoining of DNA in cultured mammalian cells treated with bleomycin. Gann 61, 513 to 516 (1970).PubMedGoogle Scholar
  61. UMEZAWA, H., MAEDA, K., TAKEUCHI, T., OKAMI, Y.: New antibiotics, bleomycin A and B. J. Antibiot. (Tokyo) 19A, 200–209 (1966a).Google Scholar
  62. UMEZAWA, H., SUHARA, Y., TAKITA, T., MAEDA, K.: Purification of bleomycins. J. Antibiot. (Tokyo) 19A, 210215 (1966b).Google Scholar
  63. WATANABE, M., AUGUST, J.T.: Inhibition of RNA synthesis by phleomycin. Bact. Proc. 66, 115 (1966).Google Scholar
  64. WATANABE, M., AUGUST, J.T.: Replication of RNA bacteriophage R23. II. Inhibition of phage-specific RNA synthesis by phleomycin. J. molec. Biol. 33, 21–33 (1968).PubMedGoogle Scholar
  65. YAMANE, T., DAVIDSON, N.: On the complexing of deoxyribonucleic acid (DNA) by mercuric ion. J. Amer. chem. Soc. 83, 2599–2607 (1960).Google Scholar
  66. YAMAZAKI, Z., MÜLLER, W.E.G., ZAHN, R.K.: Action of bleomycin on programmed synthesis. Influence on enzymatic DNA, RNA and protein synthesis. Biochim. biophys. Acta (Amst.) 308, 412–421 (1973).Google Scholar
  67. ZEE-CHENG, K.Y., CHENG, C.: Synthesis of 2’-(2-aminoethyl)-2’,4-bithiazole-4-carboxylic acid, a component of the antitumour antibiotic bleomycin. J. heterocyclic Chem. 7, 1439–1440 (1970).Google Scholar

F. Neocarcinostatin

  1. FALASCHI, A., KORNBERG, A.: Phleomycin, an inhibitor of DNA polymerase. Fed. Proc. 23, 940–945 (1964).PubMedGoogle Scholar
  2. HEINEMANN, B., HOWARD, A.J.: Induction of lambda bacteriophage in E. coli as a screening test for potential antitumour agents. Appl. Microbiol. 12, 234–239 (1964).Google Scholar
  3. HOMMA, M., KOIDA, T., SAITOKOIDE, T., KAMO, I., SETO, M., KUMAGAI, K., ISHIDA, N.: Specific inhibition of the initiation of DNA synthesis in HeLa cells by neocarzinostatin. In: Progress in Antimicrob. and Anticancer Chemotherapy, Vol. 2, pp. 410–415. Baltimore/Maryland-Manchester/England: University Park Press 1970.Google Scholar
  4. ISHIDA, N., MIYAZAKI, K., KUMAGI, K., RIKIMARU, M.: Neocarzinostatin, an antitumour antibiotic of high molecular weight. Isolation, physicochemical properties and biological activities. J. Antibiot. (Tokyo) Ser. A 18a, 68–76 (1965).Google Scholar
  5. KAJIWARA, K., KIM, U.H., MÜLLER, G.C.: Phleomycin, an inhibitor of replication of HeLa cells. Cancer Res. 26, 233–236 (1966).PubMedGoogle Scholar
  6. KUMAGAI, K., ONO, Y., NISHIKAWA, T., ISHIDA, N.: Cytological studies on the effect of neocarzinostatin on HeLa cells. J. Antibiot. (Tokyo) Ser. A 19, 69–74 (1966).Google Scholar
  7. MAEDA, H., ISHIDA, N.: Conformational study of antitumour proteins. Neocarzinostatin and a deaminated derivative. Biochim. biophys. Acta (Amst.) J 47, 597–599 (1967).Google Scholar
  8. MAEDA, H., KUMAGAI, K., ISHIDA, N.: Characterization of neocarzinostatin. J. Antibiot. (Tokyo) Ser. A JL9, 253–259 (1966).Google Scholar
  9. MEIENHOFER, J., MAEDA, H., GLASER, Ch.B., CZOMBOS, J., KUROMIZU, K.: Primary structure of neocarcinostatin, an antitumour protein. Science 128, 875–876 (1972).Google Scholar
  10. ONO, Y., WATANABE, Y., ISHIDA, N.: Mode of action of neocarzinostatin. Inhibition of DNA synthesis and degradation of DNA in Sarcina lutea. Biochim. biophys. Acta (Amst.) 119, 46–58 (1966).Google Scholar
  11. PRICE, K.E., BRUCK, R.E., LEIN, J.: System for detecting inducers of lysogenic E. coli W 1709 (A) and its applicability as a screen for antineoplastic antibiotics. Appi. Microbiol. 12, 428–435 (1964).Google Scholar

G. Edeine

  1. HETTINGER, T.P., KURYLO-BOROWSKA, Z., CRAIG, L.C.: The chemistry of the edeine polyamine antibiotics. Ann. N.J. Acad. Sci. 171, 1002 to 1009 (1970).Google Scholar
  2. HETTINGER, T.P., CRAIG, L.C.: Edeine. IV. Structures of the antibiotic peptides edeines Ai and Bx. Biochemistry 9, 1224–1232 (1970).PubMedGoogle Scholar
  3. KURYLO-BOROWSKA, Z., SZER, W.: Inhibition of bacterial DNA synthesis by edeine effect on E. coli mutants lacking DNA polymerase I. Biochim. biophys. Acta (Amst.) 287, 236–245 (1972).Google Scholar
  4. TABACZYNSKI, M.M., JABLONSKA, E.: The effect of edeine on intracellular growth and mutation of bacteriophage T4 B. Acta Microbiol, pol. 2(A), 169–178 (1970).Google Scholar
  5. WOJCIECHOWSKA, H., CIARKOWSKI, J., CHMARA, H., BOROWSKI, E.S: The antibiotic edeine IX: The isolation and the composition of edeine D. Experientia 28, 1423–1424 (1972).PubMedGoogle Scholar

H. Nalidixic Acid

  1. BAIRD, J.P., BOURGUIGNON, G.J., STERNGLANZ, R.: Effect of nalidixic acid on the growth of deoxyribonucleic acid bacteriophages. J. Virol. 9, 17–21 (1972).PubMedGoogle Scholar
  2. BARBOUR, S.D.: Effect of nalidixic acid on conjugational transfer and expression of episomal lac genes in Escherichia coli K12. J. molec. Biol. 28 373–376 (1967).PubMedGoogle Scholar
  3. BONHOEFFER, F., VIELMETTER, W.: Conjugational DNA transfer in Escherichia coli. Cold Spr. Harb, quant. Biol. 33, 623–627 (1968).Google Scholar
  4. BOUCK, N., ADELBERG, E.A.: Mechanism of action of nalidixic acid on conjugating bacteria. J. Bact. 102, 688–701 (1970).PubMedGoogle Scholar
  5. BOYLE, J.V., COOK, T.M., GOSS, W.A.: Mechanism of action of nalidixic acid on E. coli. VI. Cell free studies. J. Bact. 97, 230–236 (1969).PubMedGoogle Scholar
  6. COOK, T.M., DEITZ, W.H., GOSS, W.A.: Mechanism;of action of nalidixic acid on E. coli. IV. Effects on the stability of cellular constituents. J. Bact. 9J, 774–779 (1966a).Google Scholar
  7. COOK, T.M., GOSS, W.A., DEITZ, W.H.: Mechanism of action of nalidixic acid on E. coli. V. Possible mutagenic effect. J. Bact. 91, 78o-783 (1966b).Google Scholar
  8. COOK, T.M., BROWN, K.G., BOYLE, J.V., GOSS, W.A.: Bactericidal action of nalidixic acid on B. subtilis. J. Bact. 92, 1510–1514 (1966c).PubMedGoogle Scholar
  9. DEITZ, W.H., COOK, T.M., GOSS, W.A.: Mechanism of action of nalidixic acid on E. coli. III. Conditions required for lethality. J. Bact. 11, 768–773 (1966).Google Scholar
  10. GAGE, L.P., FUJITA, D.J.: Effect of nalidixic acid on deoxyribonucleic acid synthesis in bacteriophage SP01-infected Bacillus subtilis. J. Bact. 98, 96–103 (1969).PubMedGoogle Scholar
  11. GANESAN, A.T.: Studies on the in vivo synthesis of transforming DNA. Proc. nat. Acad. Sci. (Wash.) 64, 1058–1065 (1968).Google Scholar
  12. GOSS, W.A., DEITZ, W.H., COOK, T.M.: Mechanism of action of nalidixic acid on E. coli. J. Bact. 88, 1112–1118 (1964).PubMedGoogle Scholar
  13. GOSS, W.A., DEITZ, W.H., COOK, T.M.: Mechanism of action of nalidixic acid on E. coli. II. Inhibition of DNA synthesis. J. Bact. 89, 1068–1074 (1965).PubMedGoogle Scholar
  14. HANE, M.W.: Some effects of nalidixic acid on conjugation in Escherichia coli K12. J. Bact. 105, 46–56 (1971).PubMedGoogle Scholar
  15. HANE, M.W., WOOD, T.H.: E. coli K-12 mutants resistant to nalidixic acid: Genetic mapping and dominance studies. J. Bact. 9J3, 238–241 (1969).Google Scholar
  16. LESHER, G.Y., FROELICH, E.J., GRUETT, M.D., BAILEY, J.H., BRUNDAGE, P.P.: 1,8-naphthyridine derivatives: a new class of chemotherapeutic agents. J. med. pharm. Chem. 5, 1063–1065 (1962).Google Scholar
  17. MOUNOLOU, J.C., PERRODIN, G.: Inhibition de 1’adaptation respiratoire et de la synthese d’ADN par l’acide nalidixique. Coropt. Rend. Acad. Sci. (Paris) 267D, 1286–1288 (1968).Google Scholar
  18. OHKI, M., THOMIZAWA, J.-I.: Assymetric transfer of DNA strands in bacterial conjugation. Cold Spr. Harb. Symp. quant. Biol, 4, 651–658 (1968).Google Scholar
  19. PEDRINI, A.M., GEROLDI, D., FALASCHI, A.: Nalidixic acid does not inhibit bacterial transformation. Molec. gen. Genet. 116, 91–94 (1972a).PubMedGoogle Scholar
  20. PEDRINI, A.M., GEROLDI, D., SICCARDI, A., FALASCHI, A.: Studies on the mode of action of nalidixic acid. Europ. J. Biochem. 25, 359–365 (1972b).PubMedGoogle Scholar
  21. PUGA, A., TESSMAN, I.: Mechanism of transcription of bacteriophage S13. II. Inhibition of phage-specific transcription by nalidixic acid. J. molec. Biol. 715, 99–108 (1973).Google Scholar
  22. RAMAREDDY, G., REITER, H.: Specific loss of newly replicated deoxyribonucleic acid in nalidixic acid-treated B. subtilis 168. J. Bact. J 100, 724–729 (1969).Google Scholar
  23. ROSENKRANZ, H.S., LAMBEK, C.: In vivo effect of nalidixic acid (Neg Gram) on the DNA of human diploid cells in tissue culture. Proc. Soc. exp. Biol. (N.Y.) 120, 549–552 (1965).Google Scholar
  24. SCHNECK, P.K., STAUDENBAUER, W.L., HOFSCHNEIDER, P.H.: Replication of bacteriophage M-13. Template specific inhibiton of DNA synthesis by nalidixic acid. Europ. J. Biochem. 318, 130–136 (1973).Google Scholar
  25. WALTON, J.R., SMITH, D.H.: Hemolysin production in E. coli associated with nalidixic acid resistance. Antimicrob. Agents Chemother. 1968, pp. 54–56 (1968).Google Scholar
  26. WEHR, C.T., KUDRNA, R.D., PARKS, L.W.: Effect of putative DNA inhibitors on macromolecular synthesis in S. cerevisiae. J. Bact. 102, 636–641 (1970).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1974

Authors and Affiliations

  • Helga Kersten
    • 1
  • Walter Kersten
    • 1
  1. 1.Physiologisch-Chemisches InstitutUniversität Erlangen-NürnbergErlangenFed. Rep. Germany

Personalised recommendations