Algebra pp 443-459 | Cite as

Morita Theorems and the Picard Group

  • Carl Faith
Part of the Die Grundlehren der mathematischen Wissenschaften book series (GL, volume 190)


The Morita theorem stated and proved in Chapter 4 is taken up again in this chapter in expanded and more general form, to be used in the determination of the Picard group Pic (mod-A) of all k-linear auto-equivalences of mod-A for an arbitrary algebra A, and also (in Exercises for Chapter 12, and in Chapter 32) of the Brauer group of a commutative ring k.


Commutative Ring Isomorphism Class Equivalence Data Picard Group Dedekind Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [60]
    Lubkin, S.: Imbedding of abelian categories. Trans. Amer. Math. Soc. 97, 410–417 (1960).CrossRefMathSciNetGoogle Scholar
  2. [51]
    Shepherdson, J. C.: Inverse and zero divisors in matrix rings. Proc. Lond. Math. Soc. 61 71–85 (1951).CrossRefMathSciNetGoogle Scholar
  3. [59]
    Swan, R.: Projective modules over finite groups. Bull. Amer. Math. Soc. 65, 365–367 (1959).CrossRefzbMATHMathSciNetGoogle Scholar
  4. [62]
    Cohn, P. M.: On subsemigroups of free semigroups. Proc. Amer. Math. Soc. 13, 347–351 (1962).CrossRefzbMATHMathSciNetGoogle Scholar
  5. [67]
    Faith, C., Walker, E. A.: Direct sum representations of injective modules. J. Alg. 5, 203–221 (1967).CrossRefzbMATHMathSciNetGoogle Scholar
  6. [68]
    Gorenstein, D.: Finite Groups. New York: Harper & Row 1968.zbMATHGoogle Scholar
  7. [63]
    Kurosch, A. G.: General Algebra. New York: Chelsea 1963.Google Scholar
  8. [60]
    Lubkin, S.: Imbedding of abelian categories. Trans. Amer. Math. Soc. 97, 410–417 (1960).CrossRefMathSciNetGoogle Scholar
  9. [55]
    Artin, E.: Galois Theory. South Bend: Notre Dame University 1955.Google Scholar
  10. [66a]
    Cohn, P. M.: Morita Equivalence and Duality. University of London, Bookstore, Queen Mary College, Mile End Road, London 1966.Google Scholar
  11. [52]
    Feller, E. H., Swokowski, E. W.: Reflective rings with the ascending chain condition. Proc. Amer. Math. Soc. 12, 651–653 (1961).Google Scholar
  12. [58]
    Findlay, G. D., Lambek, J.: A generalized ring of quotients, I, II. Canad. Math. Bull. 1, 77-85, 155–167 (1958).Google Scholar
  13. [60]
    Freyd, P.: Functor Theory. Ph. D. Thesis, Columbia University 1970.Google Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1973

Authors and Affiliations

  • Carl Faith
    • 1
  1. 1.Rutgers UniversityNew BrunswickUSA

Personalised recommendations