The Phragmén-Lindelöf Theorem

  • Hans Rademacher
Part of the Die Grundlehren der mathematischen Wissenschaften book series (GL, volume 169)


The maximum principle for analytic functions of a complex variable, which states that the absolute value of an analytic function attains its maximum on the boundary, is derived from the fact that the function cannot have a maximum of its absolute value in any interior point. It is thus only proved for compact regions. And indeed it is not valid for noncompact regions, as the following example shows. We consider f(s) = ecos s in the strip S: —π/2 ≦ σ ≦ π\2. It is obviously regular in the strip and on its boundaries. On the boundaries we have fπ/2 + it) = e±isinht = e±isnht and thus |fπ\2 + it) | = 1. However f(it) = ecosh te(1/2)exp|t| which tends to ∞ as |t| → ∞. This example is also instructive in so far as it shows the least order of growth that a function bounded on the boundary must have if it does not remain bounded in the interior of the strip.


Analytic Function Harmonic Function Interior Point Number Field Subharmonic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag, Berlin • Heidelberg 1973

Authors and Affiliations

  • Hans Rademacher

There are no affiliations available

Personalised recommendations