The application of tracers to biological research and in particular to problems in plant physiology and biochemistry has received considerable attention during the last decade. The main principles underlying the use of tracers, the methods adopted and the results achieved have been discussed in a series of excellent reviews and books, which are listed at the end of this section. Only a few of these, however, discuss in some detail the equipment and technical procedures employed. The present work mainly attempts to assemble information on the procedures for the assay of the various types of isotopes when prepared in the form of either a solid, liquid or gaseous sample. The radioactive isotopes are used more extensively than the stable variety in tracer research for two main reasons. Firstly, the dilution of the isotope in the tissue which can be tolerated, while still allowing its detection and estimation with reasonable accuracy, is very much greater in the case of the radioactive element: a milMonfold compared to only a thousandfold for the stable isotope. Secondly, the cost of the equipment for detecting and analysing test materials labelled with radioactive isotopes is much less and it is also easier to service and maintain. However, when it is necessary to follow the metabolism of the nitrogen and oxygen atoms, the stable isotopes N15 and O18, are the only ones available. Furthermore, it is often of advantage to be able to follow simultaneously the different pathways of metabolism of neighbouring groups or atoms, in a given molecule (e. g., the two carbons of acetic acid, or the β-carbon and nitrogen of an amino group, in an amino acid). This is done most effectively, using doubly-labelled compounds with one atom marked with a stable isotope and the other with a radioactive isotope. It is therefore desirable in tracer research to have access to equipment for the assay of both types of isotopes. The techniques for detecting and assaying radioactive isotopes are described first.


Radioactive Isotope Stable Isotope Count Rate Ionization Chamber Sensitive Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General Referencs

  1. Calvin, M., C. Heidelberger, J. C. Reid, B. M. Tolbert and P. P. Yankwich: “Isotopic Carbon”. J. Wiley & Sons Inc. 1949.Google Scholar
  2. Cook, G. B., and I. F. Duncan; “Modern Radiochemical Practice”. Oxford: Clarendon Press 1953.Google Scholar
  3. Friedlander, G., and J. W. Kennedy: “Introduction to Radiochemistry”. J. Wiley & Sons Inc., 1949.Google Scholar
  4. Hevesy, G.: “Radioactive Indicators”. New York: Interscience Publishers 1948.Google Scholar
  5. Kamen, M. D., “Radioactive Tracers in Biology”. 2nd Edr New York: Acad. Press 1951.Google Scholar
  6. Korff, S. A.: “Electron and Nuclear Counters”. D. van Nostrand Co. Inc. 1946.Google Scholar
  7. Langer, A.: “The Measurement of Radioactivity for Tracer Applications” p. 439, Physical Methods in Chemical Analysis. Ed. W. G. Berl, Acad. Press 1951.Google Scholar
  8. Sachs, J.: “Isotopic Tracers in Biochemistry and Pnvsiology”. New York: McGraw Book Co. Inc. 1953.Google Scholar
  9. Schweitzer, G. K., and I. B. Whitney: “Radioactive Tracer Techniques”. D. van Nostrand Co. Inc. 1949.Google Scholar
  10. Sibi, W. E.: “Isotopic Tracers and Nuclear Radiations”. McGraw-Hill Book Co. Inc. 1949.Google Scholar
  11. Taylor, D.: “The Measurement of Radioactive Isotopes”. Methuen & Co. Ltd. 1951.Google Scholar
  12. Wilkinson, D. H.: “Ionization Chambers and Counters”. Camb. Univ. Press 1950.Google Scholar
  13. Edwards, J. W.: “Preparation and Measurement of Isotopic Tracers” (Symposium). Ann Arbor-Michigan 1946.Google Scholar
  14. Edwards, J. W. “The Use of Isotopes in Biology and Medicine” (Symposium). Univ. of Wisconsin Press 1948.Google Scholar
  15. Edwards, J. W. “Advances in Biological and Medical Physics”, Ed., Lawrence, J. H., and J. G. Hamilton: Vol. I. New York: Acad. Press Inc. 1948. British Medical Bulletin (Symposium), Vol. 8, No. 2–3, 1950.Google Scholar

References to Special Papers

  1. Burris, R. H.: Botan. Rev. 16, 150 (1950).CrossRefGoogle Scholar
  2. Mckee, H. S.: New-Phytologist 48, 1 (1950).CrossRefGoogle Scholar
  3. Hendricks, S. B., and L. A. Dean: Ann. Rev. Nuclear Sci. 1, 597 (1952).CrossRefGoogle Scholar
  4. Villee, C. A.: Ann. Rev. Nuclear Sci. 1, 525 (1952).CrossRefGoogle Scholar
  5. Rittenberg, D., and T. D. Price: Ann Rev. Nuclear Sci. 1, 569 (1952).CrossRefGoogle Scholar
  6. Anderson, R. C., Y. Delabarre and A. A. Bothner-By: Anal. Chem. 24, 1298 (1952).CrossRefGoogle Scholar
  7. Anger, H. O.: Rev. Sci. Instr. 22, 912 (1951).CrossRefGoogle Scholar
  8. Armstrong, W. D., and J. Schubert: Anal. Chem. 20, 271 (1948).CrossRefGoogle Scholar
  9. Aston, F. N.: Phil. Mag. 38, 709 (1919).Google Scholar
  10. Atkinson, H.F.: Nature (Lond.) 164, 541 (1949).CrossRefGoogle Scholar
  11. Bale, W. F., and J. F. Bonner: Physical Methods of Organic Chemistry. Vol. H, Ch. 25 p. 1249. New York: Interseience Publishers 1946.Google Scholar
  12. Barbour, H. G., and W. F. Hamilton: Amer. J. Phvsiol. 69, 654 (1924).Google Scholar
  13. Bauer, N.: Physical Methods of Organic Chemistry. Weissberger Ed. p. 719. New York: Interseience Publishers 1945.Google Scholar
  14. Beers, Y.: Rev. Sci. Instr. 13, 72 (1942).CrossRefGoogle Scholar
  15. Belanger, L. F.: Anat. Record 107, 149 (1950).CrossRefGoogle Scholar
  16. Belanger, L. F., and C. P. Leblond: Endocrinology (Springfield, 111.) 39, 8 (1946).CrossRefGoogle Scholar
  17. Benson, A. A.: Quoted in “Isotopie Carbon” p. 72. New York: Wiley & Sons Inc. 1949.Google Scholar
  18. Benson, A. A., J. A. Bassham, M. Calvin, T. C. Goodale, V. A. Haas, W. Stepka: J. Amer. Chem. Soc. 72, 1710 (1950).CrossRefGoogle Scholar
  19. Benson, A. A., and M. Calvin: J. Expt. Bot. 1, 63 (1950).CrossRefGoogle Scholar
  20. Bentley, R.: Cold Spring Harbor Symposia on Quantitative Biol. Ann. Arbor 13, 11 (1948).Google Scholar
  21. Bernstein, W., and R. Ballentine: Rev. Sci. Instr. 21, 158 (1950).CrossRefGoogle Scholar
  22. Biggs, M. W., D. Kritchevsky and M. R. Kirk: Anal. Chem. 24, 223 (1952).CrossRefGoogle Scholar
  23. Bleakney, W.: Phys. Rev. 41, 32 (1932).CrossRefGoogle Scholar
  24. Borkowski, C. J.: Anal. Chem. 21, 348 (1949).CrossRefGoogle Scholar
  25. Bourne, G. H.: Nature (Lond.) 163, 923 (1949).CrossRefGoogle Scholar
  26. Boursnell, J. C.: Nature (Lond.) 165, 399 (1950).CrossRefGoogle Scholar
  27. Boyd, G. A.: J. Biol. Photo. Ass. 16, 65 (1947).Google Scholar
  28. Brown, S. C., and W. W. Miller: Rev. Sci. Instr. 18, 496 (1947).CrossRefGoogle Scholar
  29. Brownell, G. L., and H. S. Lockhart: Nucleonics 10, No.2 (1952).CrossRefGoogle Scholar
  30. Burtt, B. P.: Nucleonics 5, 28 (1949).PubMedGoogle Scholar
  31. Calvin, M., and A. A. Benson: Science (Lancaster, Pa.) 109, 140 (1949).Google Scholar
  32. Calvin, M., C. Heidelberger, J.C. Reid, B.M. Tolbert and P.F. Yankwich: Isotopie Carbon. New York: J. Wiley & Sons Inc. 1944.Google Scholar
  33. Chalmers, T. A.: Nature (Lond.) 168, 870 (1951).CrossRefGoogle Scholar
  34. Cook, G. E., and J. F. Duncan: Modern Radiochemical Practice. Oxford: Clarendon Press 1952.Google Scholar
  35. Cook, G. B., J. F. Duncan and M. A. Hewitt: Nucleonics 8, 24 (1951).PubMedGoogle Scholar
  36. Clay-Comb, C. K., T. T. Hutchens and J. T. VAN Bruggen: Nucleonics 7, 38 (1950).Google Scholar
  37. Cohn, M., and H. C. Urey: J. Am. Chem. Soc. 60, 679 (1938).CrossRefGoogle Scholar
  38. Curtiss, L. F.: U. S. Natl. Bur. of Standards, Circular 1948, 473; 1949, 476; 1950, 490.Google Scholar
  39. Dauben, W. G., J. C. Reid and P. F. Yankwich: Anal. Chem. 19, 828 (1947).CrossRefGoogle Scholar
  40. Damon, P. E.: Rev Sci. Instr. 22, 587 (1951).CrossRefGoogle Scholar
  41. Dempster, A. H.: Phys. Rev. 11, 316 (1918).CrossRefGoogle Scholar
  42. Dole, M., and R. L. Slobod: J. Amer. Chem. Soc. 62, 471 (1940).CrossRefGoogle Scholar
  43. Doniach, I., and S. R. Pelc: Brit. J. Radiology 23, 184 (1950).CrossRefGoogle Scholar
  44. Eidinoff, M. L.: Anal Chem. 22, 529 (1950).CrossRefGoogle Scholar
  45. Entenman, C., S. R. Lerner, I. L. Chaikoff and W. G. Dauben: Proc. Soc. Exp. Biol. Med. 70, 364 (1949).PubMedGoogle Scholar
  46. Evans, T. C.: Proc. Soc. Exp. Biol. Med. 64, 313 (1947).PubMedGoogle Scholar
  47. Evans, E. A., and J. L. Huston: Anal. Chem. 24, 1482 (1952).CrossRefGoogle Scholar
  48. Fager, E. W.: (1947) quoted in “Isotopie Carbon” p. 151. New York: J. Wiley & Sons, Inc. 1949.Google Scholar
  49. Fay, J. W. J.: Brit. Med. Bull. 8, 246 (1952).PubMedGoogle Scholar
  50. Fenger-eriksen, K., A. Krogh and H. Ussing: Biochem. J. 30, 1264 (1936).PubMedGoogle Scholar
  51. Franklin, E., and W. R. Loosemore: Proc. Inst. Elee. Engnrs. 98, Pt II, 237 (1951).Google Scholar
  52. Freedman, A. J., and E. C. Anderson: Nucleonics 10, 57 (1952).Google Scholar
  53. Friedman, L., and A. P. Irsa: Anal. chem. 24, 876 (1952).CrossRefGoogle Scholar
  54. Friedrich, A.: Die Praxis der quantitativen organisehen Mikroanalyse. Leipzig und Wien 1933.Google Scholar
  55. Frilette, V. J., and J. Hanle: Anal. Chem. 19, 984 (1947).CrossRefGoogle Scholar
  56. Gilfillan, F. S., and M. Polyani: Z. physik. Chem. A166, 254 (1933).Google Scholar
  57. Glascock, R. F.: (a) Nature (Lond.) 168, 121 (1951).CrossRefGoogle Scholar
  58. Glascock, R. F. (b) Nucleonics 9, 28 (1951).Google Scholar
  59. Glascock, R. F. Biochem. J. 52, 699 (1952).PubMedGoogle Scholar
  60. Glass, F. M.: Nucleonics 10, 36 (1952).Google Scholar
  61. Gleason, G. I., J. D. Taylor and D. L. Tabern: Nucleonics 8, 12 (1951).PubMedGoogle Scholar
  62. Glover, J.: Unpublished work 1952.Google Scholar
  63. Glover, J., M. D. Kamen and H. VAN Genderen: Arch. Biochem. a. Biophys. 35, 384 (1952).CrossRefGoogle Scholar
  64. Gortner, R. A., and W. F. Hoffman: J. Biol. Chem. 70, 457 (1926).Google Scholar
  65. Graf, W. L., C. L. Comar and I. B. Whitney: Nucleonics 9, 22 (1951).Google Scholar
  66. Graff, J., and D. Rittenberg: Anal. Chem. 24, 878 (1952).CrossRefGoogle Scholar
  67. Gray, I., S. Ideka, A. A. Benson and D. Kritchesky: Rev. Sci. Instr. 21, 1022 (1950).CrossRefGoogle Scholar
  68. Gurin, S., and A. M. Delluva: J. Biol. Chem. 170, 545 (1947).Google Scholar
  69. Henriques, F. C., G. E. Kritchevsky, C. Margnetti and W. G. Schneider: Ind. Eng. Chem. Anal. Ed. 18, 349 (1946).CrossRefGoogle Scholar
  70. Henriques, F. C., and C. Margnetti: (a) Ind. Eng. Chem. Anal. Ed. 18, 417 (1946).CrossRefGoogle Scholar
  71. Henriques, F. C., and C. Margnetti: (b) Ind. Eng. Chem. Anal. Ed. 18, 420 (1946).CrossRefGoogle Scholar
  72. Herz, R. H.: Nucleonics 9, 24 (1951).Google Scholar
  73. Hughes, E. D., C. K. Ingold andC. L. Wilson: J. Chem. Soc. 493 (1934).Google Scholar
  74. Hull, A. W.: Physics 2, 409 (1932).CrossRefGoogle Scholar
  75. Hutchens, T. T., C. K. Claycomb, W. J. Cathey and J. T. VAN Bruggen: Nucleonics 7, 41 (1950).PubMedGoogle Scholar
  76. Janney, C. D., and B. J. Moyer: Rev. Sci. Instr. 1948, 19.Google Scholar
  77. Jesse, W. P., L. A. Han-num, H. Forstat and A. L. Hart: Phys. Rev. 71, 478 (1947).Google Scholar
  78. Johnson, F., and J. E. Willard: Science (Lancaster, Pa.) 199, 11 (1949).Google Scholar
  79. Johnson, H. L.: J. Amer. Chem. Soc. 57, 484 (1935).CrossRefGoogle Scholar
  80. Kalmon, B.: Nuclconics 11, 56 (1953).Google Scholar
  81. Kamen, M. D.: (a) Radioactive Tracers in Biology. 2nd Ed. p. 101 New York: Acad. Press Inc. 1951.Google Scholar
  82. Kelsey, F. E.: Science 109, 566 (1949)PubMedCrossRefGoogle Scholar
  83. Keston, A. S., D. Rittenberg and R. Schonheimer: J. Biol Chem. 122, 227 (1937).Google Scholar
  84. Lamb, A. B., and R. E. Lee: J. Amer. Chem. Soc. 35, 1666 (1913).CrossRefGoogle Scholar
  85. Lauritsen, C. C., and T. Lauritsen: Rev. Sci. Instr. 8, 438 (1937).CrossRefGoogle Scholar
  86. LE Caine, H., and J. G. Waghorne: Can. J. Res. 19, 21 (1941).CrossRefGoogle Scholar
  87. Libby, W. F.: Anal. Chem. 19, 2 (1947).CrossRefGoogle Scholar
  88. Libby, W. F., and D. D. Lee: Phys. Rev. 55, 245 (1939).CrossRefGoogle Scholar
  89. Lindenbaum, A., J. Schubert and W. D. Armstrong: Anal. Chem. 20, 1120 (1948).CrossRefGoogle Scholar
  90. Lindholm, E.: Ark. Mat. Astr. Fys. 34, 1 (1948).Google Scholar
  91. Lies ON, N., Y. Lorber and E. J. Hill: J. Biol. Chem. 158, 219 (1945).Google Scholar
  92. Loftfield, R.B.: Quoted in “Isotopic Carbon” p. 76. New York: J. Wiley & Sons 1949.Google Scholar
  93. Longsworth, G.L.: J. Amer. Chem. Soc. 59, 1483 (1937).CrossRefGoogle Scholar
  94. Maodonald, A. M., J. Cobb, A. K. Solomon and D. Steinberg: Proc. Soc. Exp. Biol. Med. 72, 117 (1949).Google Scholar
  95. Montgomery, C. G., and D. D. Montgomery: J. Franklin Inst. 281, 447 (1941).CrossRefGoogle Scholar
  96. Neher, H. V., and W. W. Harper: Phys. Rev. 49, 940 (1936).CrossRefGoogle Scholar
  97. Neher, H. V., and W. H. Pickering: Phys. Rev. 53, 316 (1938).CrossRefGoogle Scholar
  98. Neville, O. K.: Atomics (London) 3, 309 (1952).Google Scholar
  99. Nier, A. O.: Phys. Rev. 77, 789 (1950).CrossRefGoogle Scholar
  100. Nier, A. O. Rev. Sci. Instr. 18, 298 (1947).CrossRefGoogle Scholar
  101. Nier, A. O., E. P. Ney and M. G. Ingraham: Rev. Sci. Instr. 18, 191 (1947).CrossRefGoogle Scholar
  102. Nye, W. N., and J. D. Teresi: Anal. Chem. 23, 643 (1951).CrossRefGoogle Scholar
  103. Palevsky, H., R. K. Swant and R. Grenchik: Rev. Sci. Instr. 18, 298 (1947).CrossRefGoogle Scholar
  104. Parker, H. M.: In Adv. in Biol. a. Med. Phys. Vol. 1, p. 226. New York: Acad. Press. 1948.Google Scholar
  105. Pelc, S. R.: Nature (Lond.) 160, 749 (1947).CrossRefGoogle Scholar
  106. Pinajian, J. J., and J. M. Gross: Anal. Chem. 23, 1056 (1951).CrossRefGoogle Scholar
  107. Place, N., L. Klein, H. K. Schachman and M. Harfeinst: J. Biol. Chem. 168, 459 (1947).Google Scholar
  108. Pregl, F., and J. Grant: Quant. Org. Microanalysis, 4th Eng. Ed. Blakiston (1946).Google Scholar
  109. Patnam, J. L.: Brit. J. Rad. 23, 46 (1950).CrossRefGoogle Scholar
  110. Regier, R. B.: Anal. Chem. 21, 1020 (1949).CrossRefGoogle Scholar
  111. Richards, T. W., and J. W. Shipley: J. Amer. Chem. Soc. 34, 599 (1912); 36, 1 (1914).CrossRefGoogle Scholar
  112. Rittenberg, D.: Preparation and Measurement of Isotopic Tracers. Ann Arbor: Edwards Bros. Inc. 1946; Private Communication 1951.Google Scholar
  113. Rittenberg, D., A. S. Keston, F. Rosebury and R. Schonheimer: J. Biol. Chem. 127, 291 (1939).Google Scholar
  114. Rittenberg, D., and R. Schonheimer: J. Biol. Chem. 111, 169 (1935).Google Scholar
  115. Roberts, J. D., W. Bennett, E. W. Holroyd and C. H. Fugitt: Anal. Chem. 20, 904 (1948).CrossRefGoogle Scholar
  116. Robertson, J. S.: Isotopic Tracers and Nuclear Radiations. W. E. Siri, p. 263, 279. McGraw-Hill Book Co. Inc. 1949.Google Scholar
  117. Robinson, C. F.: Science (Lancaster, Pa.) 112, 198 (1950).Google Scholar
  118. Rockland, L. B., J. Lieberman and M. S. Dunn: Anal. Chem. 24, 778 (1952).CrossRefGoogle Scholar
  119. Rotblat J., E. A. Sayle and D. G. A. Thomas: J. Sci. Inst. 25, 33 (1948).CrossRefGoogle Scholar
  120. Russell, W.W., and J. W. Fulton: Ind. Eng. Chem. Anal. Ed. 5, 387(1933).CrossRefGoogle Scholar
  121. Russell, R. S., F. K. Sanders and O. N. Bishop: Nature (Lond.) 163, 639 (1949).CrossRefGoogle Scholar
  122. Schweitzer, G. K., and B. R. Stein: Nucleonics 7, 65 (1950).PubMedGoogle Scholar
  123. Schweitzer, G. K., and I. B. Whitney: Radioactive Tracer Technique. D. van Nostrand Co. Inc. 1959.Google Scholar
  124. Sharpe, J., and D. Taylor: Proc. Inst. Elec. Engnrs. 98, Pt. H, 209 (1951).Google Scholar
  125. Sherwood, H. F.: Rev. Sci. Instr. 18, 80 (1947).CrossRefGoogle Scholar
  126. Shirley, R. L.: Anal. Chem. 22, 132 (1950).CrossRefGoogle Scholar
  127. Skinner, S. M.: Phys. Rev. 48, 438 (1935).CrossRefGoogle Scholar
  128. Skipper, H. E., C. E. Bryan, L. White JR. and O. S. HUTCHINSON: J. Biol. Chem. 173, 371 (1948).PubMedGoogle Scholar
  129. Smith, D. R.: Atomics (London) 4, 29 (1953).Google Scholar
  130. Soloway, S. F. J. Rennie and De W. Stetten: Nucleonics 10, No. 4, 52 (1952).Google Scholar
  131. Sprinson, D. B. and D. Rittenberg: J. Biol. Chem. 180, 207 (1949).Google Scholar
  132. Steinberg, D., and A. K. Solomon: Rev. Sci. Instr. 20, 655 (1949).CrossRefGoogle Scholar
  133. Stever, H. G.: Phys. Rev. 61, 38 (1942).CrossRefGoogle Scholar
  134. Sucher, I., and D. Rittenberg: Private communication 1950.Google Scholar
  135. Swift, E.: (a) J. Amer. Chem. Soc. 61, 198 (1939).CrossRefGoogle Scholar
  136. Swift, E. (b) J. Amer. Chem. Soc. 61 1293 (1939).CrossRefGoogle Scholar
  137. VAN Slyke, D. D., and J. Folch: J. Biol. Chem. 136, 509 (1940).Google Scholar
  138. VAN Slyke, D. D., R. Steele and J. Blazin: J. Biol. Chem. 192, 76 (1951).Google Scholar
  139. Vigneaud, V., G. W. DU Kilmer, J. R. Rachele and M. Cohn: J. Biol. Chem. 155, 645 (1944).Google Scholar
  140. VOSKUYL, R. J.: Thesis Harvard University, 1938, quoted in Swift, 1939 (a) above.Google Scholar
  141. Washburn, E. W., and E. R. Smith: U.S. Natl. Bur. Stands J. Research 12, 305 (1934).Google Scholar
  142. Weissman, N., and R. Schonheimer: J. Biol. Chem. 140, 779 (1941).Google Scholar
  143. White, D. F., G. Cambell and P. R. Payne: Nature (Lond.) 166, 628 (1950).CrossRefGoogle Scholar
  144. Yankwich, P. E., G. K. Rollefson and T. H. Norris: J. Chem. Phys. 14, 131 (1946)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag OHG. Berlin Göttingen Heidelberg 1956

Authors and Affiliations

  • J. Glover

There are no affiliations available

Personalised recommendations