Factors Involved in Post-traumatic Ocular Neovascularization

  • Alec Garner
Part of the Symposien der Deutschen Ophthalmologischen Gesellschaft book series (OPH.GES.)

Abstract

It is a common experience that various parts of the eye are subject to vascular ingrowth as a sequel to traumatic episodes. It is equally well known, however, that such vascularization is not an inevitable consequence of injury, the risk depending in part on the anatomical location of the injury and in part on its nature. For instance, alkali-induced bums of the comea are commonly associated with neovascularization whereas acid-induced bums are not, whilst wounds of the ciliary body and choroid but not those of the iris are healed by the formation of granulation tissue. Any consideration of post-traumatic vascularization must take these factors into account.

Key words

neovascularization trauma eye pathogenesis vasoformative stimuli vasoinhibitory factors 

Schlüsselwörter

Neovaskularisation Trauma Auge vasoproliferative Faktoren gefaßhemmende Faktoren 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashton N, Cook C, Langham M (1951) Effect of cortisone on vascularization and opacification of the cornea induced by alloxan. Br J Ophthalmol 35:718–724PubMedCrossRefGoogle Scholar
  2. Baker LE, Carrel A (1928) Effect of digests of pure proteins on cell proliferation. J Exp Med 47: 353–370PubMedCrossRefGoogle Scholar
  3. Bier A (1917) Beobachtungen über Regeneration beim Menschen. Dtsch Med Wochenschr 43: Nos. 27–30Google Scholar
  4. Boggs DR, Athens JW, Cartwright GE, Wintrobe MM (1964) The effects of adrenal glucocorti- costeroids upon the cellular composition of inflammatory exudates. Am J Pathol 44:763–773PubMedGoogle Scholar
  5. Brem S, Preis I, Langer R, Brem H, Folkman J, Pätz A (1977) Inhibition of neovascularization by an extract derived from vitreous. Am J Ophthalmol 84:323–328PubMedGoogle Scholar
  6. Busch C, Wasteson A, Westermark B (1976) Release of a cell growth promoting factor from human platelets. Thromb Res 8:493–500PubMedCrossRefGoogle Scholar
  7. Cameron GR (1952) Pathology of the cell. Oliver & Boyd, EdinburghGoogle Scholar
  8. Carrell A (1922) Crowth-promoting function of leucocytes. J Exp Med 36:385–391CrossRefGoogle Scholar
  9. Carrel A (1924) Role des trephones leucocytaires. CR Soc Biol (Paris) 90:29–31Google Scholar
  10. Carrel A, Ebeling AH (1923) Trephones embryon- naires. CR Soc Biol (Paris) 89:1142–1144Google Scholar
  11. Cavalho T, Sade R, Folkman J, Cotran RS (1972) Tumour angiogenesis. Rapid induction of endothelial mitoses demonstrated by autoradiography. J Cell Biol 54:408–420Google Scholar
  12. Cogan DG (1949) Vascularization of the comea: its experimental induction by smal lesions and a new theory of its pathogenesis. Arch Ophthalmol 41:406–416CrossRefGoogle Scholar
  13. Constable IJ (1975) Pathology of vitreous membranes and the effect of haemorrhage and new vessels on the vitreous. Trans Ophthalmol Soc UK 95:382–386PubMedGoogle Scholar
  14. Constable IJ, Oguri M, Chesney DM, Swann DA, Colman RW (1973) Platelet-induced vitreous membrane formation. Invest Ophthalmol 12: 680–685PubMedGoogle Scholar
  15. Dixon JM, Lawaczeck E (1963) Corneal vascularization due to contact lenses. Arch Ophthalmol 69:72–75PubMedCrossRefGoogle Scholar
  16. Eisenstein R, Sorgente N, Sohle LW, Miller A, Kuettner KE (1973) The resistance of certain tissues to invasion: penetrability of explanted tissues by vascularized mesenchyme. Am J Pathol 73:765–774PubMedGoogle Scholar
  17. Eisenstein R, Kuettner KE, Neapolitan C, Soble LW, Sorgente N (1975) The resistance of certain tissues to invasion. III. Cartilage extracts inhibit the growth of fibroblasts and endothelial cells in culture. Am J Pathol 81:337–348PubMedGoogle Scholar
  18. Eliason JA (1978) Leukocytes and experimental corneal vascularization. Invest Ophthalmol Visual Sci 17:1087–1095Google Scholar
  19. Fischer A (1939) Nature of growth accelerating substance of animal tissue cells. Nature 144:113CrossRefGoogle Scholar
  20. Folkman J (1971) Tumour angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186PubMedCrossRefGoogle Scholar
  21. Folkman J (1972) Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg 175: 409–416PubMedCrossRefGoogle Scholar
  22. Folkman J, Cotran R (1976) Relation of vascular proliferation to tumor growth. Int Rev Exp Pathol 16:207–248PubMedGoogle Scholar
  23. Fromer CH, Klintworth GK (1975 a) An evaluation of the role of leukocytes in the pathogenesis of experimentally-induced corneal vascularization. I. Comparison of experimental models of corneal vascularization. Am J Pathol 79: 537–554PubMedGoogle Scholar
  24. Fromer CH, Klintworth GK (1975 b) An evaluation of the role of leukocytes in the pathogenesis of experimentally-induced corneal vascularization. IL Studies on the effect of leukocyte elimination on corneal vascularization. Am J Pathol 81:531–544PubMedGoogle Scholar
  25. Fromer CH, Klintworth GK (1976) An evaluation of the role of leukocytes in the pathogenesis of experimentally-induced corneal vascularization. III. Studies related to the vasoproliferative capability of polymorphonuclear leucocytes and lymphocytes. Am J Pathol 82:157–170PubMedGoogle Scholar
  26. Gerke E, Spitznas M, Brodde OE (1976) The role of lactic acid in retinal neovascularization. Albrecht Graefes Arch Klin Ophthalmol 200: 79–84CrossRefGoogle Scholar
  27. Gimbrone MA, Cotran RS, Leapman SB, Folkman J (1974) Tumor growth and neovascularization: an experimental model using the rabbit comea. J Natl Cancer Inst 52:413–427PubMedGoogle Scholar
  28. Gogi R, Rahi AHS, Gamer A (1979) The nature of retest reaction in delayed hypersensitivity. I. Light microscopic changes in the skin of the eyelid. Histopathology 3:51–67PubMedCrossRefGoogle Scholar
  29. Graymore CN (1970) Biochemistry of the retina. In: Graymore CN (ed) Biochemistry of the Eye. Academic Press, London: 645–735Google Scholar
  30. Haberlandt G (1921) Zur Physiologie der Zellteilung. VI. Über Auslösung von Zellteilungen durch Wundhormone. SB Preuss Akad Wiss 221–234Google Scholar
  31. Haudenschild CC, Zahniser D, Folkman J, Klagsbrun M (1976) Human vascular endothelial cells in culture: lack of response to serum growth factors. Exp Cell Res 98:175–183PubMedCrossRefGoogle Scholar
  32. Heughan C, Hunt TK (1975) Some aspects of wound healing research: a review. Can J Surg 18:118–126PubMedGoogle Scholar
  33. Imre G (1964) Studies on the mechanism of retinal neovascularisation. Br J Ophthalmol 48:75–82PubMedCrossRefGoogle Scholar
  34. Kerr JFR, Wyllie AH, Currie AR (1972) Apopto- sis: a basic biological phenomenon with wide ranging implications in tissue kinetics. Br J Cancer 26:239–257PubMedCrossRefGoogle Scholar
  35. Klintworth GK (1973) The hamster cheek pouch: an experimental model of corneal vascularization. Am J Pathol 73:691–710PubMedGoogle Scholar
  36. Klintworth GK (1977) The comea-structure and macromolecules in health and disease: a review. Am J Pathol 89:719–808Google Scholar
  37. Koyanagi Y (1912) Experimentelle Untersuchung über die Netzhautveränderung durch Blutinjektion in den Glaskörper. Klin Monatsbl Augenheilkd 50:722–733Google Scholar
  38. Loeb J (1893) Über die Entwicklung von Fischembryonen ohne Kreislauf Arch Ges Physiol (Bonn) 54:525–531CrossRefGoogle Scholar
  39. Marshak A, Walker AC (1945) Effect of chromatin derivative on healing of skin wounds. Proc Soc Exp Biol Med 58:62–63Google Scholar
  40. Maurice DM, Zauberman H, Michaelson IC (1966) The stimulus to neovascularization in the comea. Exp Eye Res 5:168–184PubMedCrossRefGoogle Scholar
  41. Menkin V (1941) Cellular injury in relation to proliferative and neoplastic response. Cancer Res 1:548–556Google Scholar
  42. Oguchi C (1913) Über die Wirkung von Blutinjektionen in den Glaskörper nebst Bemerkungen über die sog. Retinitis proliferans. Albrecht von Graefes Arch Klin Ophthalmol 84:446–520CrossRefGoogle Scholar
  43. Polverini PJ, Cotran RS, Gimbrone MA, Unnanue ER (1977a) Activated macrophages induce vascular proliferation. Nature 269:804–806PubMedCrossRefGoogle Scholar
  44. Polverini PJ, Cotran RS, Sholley MM (1977b) Endothelial proliferation in the delayed hypersensitivity reaction: an autoradiographic study. J Immunol 118:529–532PubMedGoogle Scholar
  45. Saba SR, Mason RG (1975) Effect of platelets and certain platelet components on growth of cultured human endothelial cells. Thromb Res 7: 807–812PubMedCrossRefGoogle Scholar
  46. Sholley MM, Cotran RS (1978) Endothelial proliferation in inflammation. IL Autoradiographic studies in X-irradiated leukopenic rats after thermal injury of the skin. Am J Pathol 91:229–242PubMedGoogle Scholar
  47. Sholley MM, Gimbrone MA, Cotran RS (1978) The effects of leukocyte depletion on corneal neovascularization. Lab Invest 38:32–40PubMedCrossRefGoogle Scholar
  48. Sidky YA, Auerbach R (1976) Lymphocyte induced angiogenesis in tumor-bearing mice. Science 192:1237–1238PubMedCrossRefGoogle Scholar
  49. Sorgente N, Kuettner VE, Soble LW, Eisenstein B (1975) The resistance of certain tissues to invasion. II. Evidence for extractable factors in cartilage which inhibit invasion by vascularized mesenchyme. Lab Invest 32:217–222PubMedGoogle Scholar
  50. horgeirsson G, Robertson AL Jr (1978a) Platelet factors and the human vascular wall: variations in growth response between endothelial and medial smooth muscle cells. Atherosclerosis, 30:67–78CrossRefGoogle Scholar
  51. Thorgeirsson G, Robertson AL Jr (1978b) The vascular endothelium-pathobiologic signifi- cande: a review. Am J Pathol 93:803–848PubMedGoogle Scholar
  52. Wells HG (1906) Pathological calcifications. J Med Res 14:491–525PubMedGoogle Scholar
  53. Westermark B, Wasteson A (1975) A platelet factor stimulating human normal glial cells. Exp Cell Res 98:170–174CrossRefGoogle Scholar

Copyright information

© J.F. Bergmann Verlag, München 1980

Authors and Affiliations

  • Alec Garner
    • 1
  1. 1.LondonEngland

Personalised recommendations