Pleckstrin Homology Domains

  • M. A. Lemmon
  • K. M. Ferguson
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 228)


Pleckstrin homology (PH) domains are small protein modules of around 120 amino acids that are found in a large number of proteins involved in intracellular signaling and cytoskeletal organization, often occurring alongside SH2, SH3, PTB and other domains discussed in this volume. PH domains were first noted by Mayer et al. (1993) and Haslam et al. (1993) as sequences found in a number of intracellular signaling molecules that show limited homology to a region repeated in the protein pleckstrin (Tyers et al. 1988). As a result, this 47-kDa protein, which is the major substrate of protein kinase C (PKC) in platelets, has lent its name to a domain now identified in more than 100 different proteins involved in different signaling and cytoskeletal organization processes. Soon after the identification of the PH domain, structural studies showed that it does indeed form an independent module with a characteristic β-sandwich structure. The functions of PH domains are now becoming more clear, and the current view is that they are involved in recruitment of their host proteins to cell membranes. In some cases this recruitment is achieved through direct interaction of the PH domain with specific membrane components, and can be directly signal-dependent — with the PH domain binding to a lipid second messenger. In this chapter, we will discuss the structure of PH domains, and the characteristics that make them ideally suited for binding to the membrane surface. We will also review the current state of knowledge regarding PH domain function and ligand-binding properties, and will consider how they may participate in defining the specificity of intermolecular interactions and compartmentalization required for the function of their host proteins in signaling processes.


Inositol Phosphate Guanine Nucleotide Exchange Factor Pleckstrin Homology Membrane Association Pleckstrin Homology Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams JM, Houston H, Allen J, Lints T, Harvey R (1992) The hematopoietically expressed vav proto-oncogene shares homology with the dbl GDP-GTP exchange factor, the ber gene and a yeast gene(CDC24) involved in cytoskeletal organization. Oncogene 7:611–618PubMedGoogle Scholar
  2. Alessi DR, Andjelkovic M, Caudwell Cron P, Morrice N, Cohen P, Hemmings BA (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15:6541–6551PubMedGoogle Scholar
  3. Andjelkovic M, Jakubowicz T, Cron P, Ming X-F, Han J-W, Hemmings BA (1996) Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors. Proc Natl Acad Sci USA 93:5699–5704PubMedCrossRefGoogle Scholar
  4. Aronheim AD, Engelberg D, Li N, Al-Alawi N, Schlessinger J, Karin M (1994) Membrane targeting of the nucleotide exchange factor Sos is sufficient for activating the Ras signaling pathway. Cell 78: 949–961PubMedCrossRefGoogle Scholar
  5. Artalejo CR, Henley J, NcNiven M, Palfrey HC (1995) Rapid endocytosis coupled to exocytosis in adrenal chromaffin cells involves Ca2 +, GTP and dynamin, but not clathrin. Proc Natl Acad Sci USA 92:8328–8332PubMedCrossRefGoogle Scholar
  6. Artalejo CR, Lemmon MA, Schlessinger J, Palfrey HC (1997) Specific role for the PH domain of dynamin-1 in the regulation of rapid endocytosis in adrenal chromaffin cells. EMBO J 16:1565–1574PubMedCrossRefGoogle Scholar
  7. Buchsbaum R, Telliez J-B, Goonesekerra S, Feig LA (1996) The N-terminal pleckstrin, coiled-coil, and IQ domains of the exchange factor Ras-GRF act cooperatively to facilitate activation by calcium. Mol Cell Biol 16:4888–4896PubMedGoogle Scholar
  8. Burgering BM, Coffer P (1995) Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376:599–602PubMedCrossRefGoogle Scholar
  9. Burgess WH, Dionne CA, Kaplow JM, Mudd R, Friesel R, Zilberstein A, Schlessinger J, Jaye M (1990) Characterization and cDNA cloning of phospholipase C-γ, a major substrate for heparin-binding growth factor 1 (acidic fibroblast growth factor)-aetivated tyrosine kinase. Mol Cell Biol 10:4770–4777Google Scholar
  10. Carpenter LC, Cantley CL (1996) Phosphoinositide kinases. Curr Opin Cell Biol 8:153–158PubMedCrossRefGoogle Scholar
  11. Cerione RA, Zheng Y (1996) The Dbl family of oncoproteins. Curr Opin Cell Biol 8:216–222PubMedCrossRefGoogle Scholar
  12. Chardin P, Camonis JH, Gale NW, Van Aelst L, Wigler MH, Bar-Sagi D (1993) Human Sos 1: a guanine nucleotide exchange factor for Ras that binds to Grb2. Science 260:1338–1343PubMedCrossRefGoogle Scholar
  13. Chardin P, Paris S, Antonny B, Robineau S, Beraud-Dufour S, Jackson CL, Chabre M (1996) A human exchange factor for ARF contains Sec7- and pleckstrin-homology domains. Nature 384:481–484PubMedCrossRefGoogle Scholar
  14. Chen R-H, Cobalan-Garcia S, Bar-Sagi D (1997) The role of the PH domain in the signal-dependent membrane targeting of Sos. EMBO J 16:1351–1359PubMedCrossRefGoogle Scholar
  15. Cheng JQ, Godwin AK, Bellacosa A, Taguchi T, Franke TF, Hamilton TC, Tsichlis PN, Testa JR (1992) AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc Natl Acad Sci USA 89:9267–9271PubMedCrossRefGoogle Scholar
  16. Chothia C (1984) Principles that determine the structure of proteins. Annu Rev Biochem 53:537–572PubMedCrossRefGoogle Scholar
  17. Chuang TT, Sallese, M, Ambrosini, G, Parruti, G, De Blasi A (1992) High expression of ß-adrenergic receptor kinase in human peripheral blood leukocytes: isoproterenol and platelet activating factor can induce kinase translocation. J Biol Chem 267:6886–6892PubMedGoogle Scholar
  18. Cifuentes ME, Honkanen L, Rebecchi MJ (1993) Proteolytic fragments of phosphoinositide-specific phospholipase C-δ1: catalytic and membrane binding properties. J Biol Chem 268:11586–11593PubMedGoogle Scholar
  19. Cifuentes ME, Delaney T, Rebecchi MJ (1994) D-Myo-inositol 1,4,5-trisphosphate inhibits binding of phospholipase C-δ1 to bilayer membranes. J Biol Chem 269:1945–1994PubMedGoogle Scholar
  20. Cook TA, Urrutia R, McNiven MA (1994) Identification of dynamin-2, an isoform ubiquitously expressed in rat tissues. Proc Natl Acad Sci USA 91:644–648PubMedCrossRefGoogle Scholar
  21. Cross DAE, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–789PubMedCrossRefGoogle Scholar
  22. Davis LH, Bennett V (1994) Identification of two regions of ßG spectrin that bind to distinct sites in brain membranes. J Biol Chem 269:4409–4416PubMedGoogle Scholar
  23. Didichenko SA, Tilton B, Hemmings BA, Ballmer-Hofer K, Thelen M (1996) Constitutive activation of protein kinase B and phosphorylation of p47phox by a membrane-targeted phosphoinositide 3-kinase. Curr Biol 6:1271–1278PubMedCrossRefGoogle Scholar
  24. Downing AK, Driscoll PC, Gout I, Salim K, Zvelebil MJ, Waterfield MD (1994) Three-dimensional solution structure of the pleckstrin homology domain from dynamin. Curr Biol 4:884–891PubMedCrossRefGoogle Scholar
  25. Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, Segal RA, Kaplan DR, Greenberg ME (1997) Regulation of neuronal survival by the serine-threonine kinase Akt Science 275:661–665PubMedCrossRefGoogle Scholar
  26. Eck MJ, Dhe-Paganon S, Trüb T, Nolte RT, Shoelson SE (1996) Structure of the IRS-1 PTB domain bound to the juxtamembrane region of the insulin receptor. Cell 85:695–705PubMedCrossRefGoogle Scholar
  27. Essen L-O, Perisic O, Cheung R, Katan M, Williams R (1996) Crystal structure of a mammalian phosphoinositide-specific phospholipase Cd. Nature 380:595–602PubMedCrossRefGoogle Scholar
  28. Ferguson KM, Lemmon MA, Schlessinger J, Sigler PB (1994) Crystal structure at 2.2 A resolution of the pleckstrin homology domain from human dynamin. Cell 79:199–209PubMedCrossRefGoogle Scholar
  29. Ferguson KM, Lemmon MA, Schlessinger J, Sigler PB (1995) Structure of a high affinity complex between inositol-1,4,5-trisphosphate and a phospholipase C pleckstrin homology domain. Cell 83:1037–1046PubMedCrossRefGoogle Scholar
  30. Font de Mora J, Guerrero C, Mahadevan D, Coque JJR, Rojas JM, Esteban LM, Rebecchi M, Santos E (1996) Isolated Sosl PH domain exhibits germinal vesicle breakdown-inducing activity in Xenopus oocytes. J Biol Chem 271:18272–18276CrossRefGoogle Scholar
  31. Franke TF, Yang S-I, Chan TO, Datta K, Kazlauskas A, Morrison DK, Kaplan DR, Tsichlis PN (1995) The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81:727–736PubMedCrossRefGoogle Scholar
  32. Franke TF, Kaplan DR, Cantley LC, Toker A (1997) Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275:665–668PubMedCrossRefGoogle Scholar
  33. Freeh M, Andjelkovic M, Reddy KK, Falck JR, Hemmings BA (1997) High affinity binding of inositol phosphates and phosphoinositides to the pleckstrin homology domain of Rac/protein kinase B and their influence on the kinase activity. J Biol Chem 272: 8474–8481CrossRefGoogle Scholar
  34. Fukuda M, Mikoshiba K (1996) Structure-function relationships of the mouse Gaplm: determination of the inositol 1,3,4,5 tetrakisphosphate-binding domain. J Biol Chem 271:18838–18842PubMedCrossRefGoogle Scholar
  35. Fukuda M, Kojima T, Kabayama H, Mikoshiba K (1996) Mutation of the pleckstrin homology domain of Bruton’s tyrosine kinase in immunodeficiency impaired inisitol 1,3,4,5-tetrakisphosphate binding capacity. J Biol Chem 271:30303–30306PubMedCrossRefGoogle Scholar
  36. Fushman D, Cahill S, Lemmon MA, Schlessinger J, Cowburn D (1995) Solution structure of pleckstrin homology domain of dynamin by heteronuclear NMR spectroscopy. Proc Natl Acad Sci USA 92:816–820PubMedCrossRefGoogle Scholar
  37. Garcia P, Gupta R, Shah S, Morris AJ, Rudge SA, Scarlata S, Petrova V, McLaughlin S, Rebecchi MJ (1995) The pleckstrin homology domain of phospholipase C-δ1 binds with high affinity to phosphatidylinositol 4,5-bisphosphate in bilayer membranes. Biochemistry 34:16228–16234PubMedCrossRefGoogle Scholar
  38. Gibson TJ, Hyvonen M, Musacchio A, Saraste M, Birney E (1994) PH domain: the first anniversary. Trends Biochem Sci 19:349–353PubMedCrossRefGoogle Scholar
  39. Habets GGM, Scholtes EHM, Zuydgeest D, van der Kammen RA, Stam JC, Collard JG (1994) Identification of an invasion inducing gene, termed Tiam-1, that encodes a protein with homology to GDP-GTP exchangers for Rho-like proteins. Cell 77:537–549PubMedCrossRefGoogle Scholar
  40. Harlan JE, Hajduk PJ, Yoon HS, Fesik SW (1994) Pleckstrin homology domains bind to phosphati-dylinositol-4,5-bisphosphate. Nature 371:168–170PubMedCrossRefGoogle Scholar
  41. Haslam RJ, Koide HB, Hemmings BA (1993) Pleckstrin domain homology. Nature 363:309–310PubMedCrossRefGoogle Scholar
  42. Hemmings BA (1997) Akt signaling: linking membrane events to life and death decisions. Science 275:628–630PubMedCrossRefGoogle Scholar
  43. Horii Y, Beeler JF, Sakaguchi K, Tachibana M, Miki T (1994) A novel oncogene, ost, encodes a guanine nucleotide exchange factor that potentially links Rho and Rac signaling pathways. EMBO J 13:4776–4786PubMedGoogle Scholar
  44. Hu R-J, Watanabe M, Bennett V (1992) Characterization of human brain cDNA encoding the general isoform of P-spectrin. J Biol Chem 267:18715–18722PubMedGoogle Scholar
  45. Hyvonen M, Macias MJ, Nilges M, Oschkinat H, Saraste M, Wilmanns M (1995) Structure of the binding site for inositol phosphates in a PH domain. EMBO J 14:4676–4685PubMedGoogle Scholar
  46. Inglese J, Koch WJ, Caron MG, Lefkowitz RJ (1992) Isoprenylation in regulation of signal transduction by G-protein-coupIed receptor kinases. Nature 359:147–150PubMedCrossRefGoogle Scholar
  47. Inglese J, Koch WJ, Touhara K, Lefkowitz RJ (1995) Gßγ interactions with PH domains and Ras-MAPK signaling pathways. Trends Biochem Sci 20:151–156PubMedCrossRefGoogle Scholar
  48. James SR, Downes CP, Gigg R, Grove SJA, Holmes AB, Alessi DR (1996) Specific binding of the Akt-1 protein kinase to phosphatidylinositol 3,4,5-trisphosphate without subsequent activation. Biochem J 315:709–713PubMedGoogle Scholar
  49. Kanematsu T, Takeya H, Watanabe Y, Ozaki S, Yoshida M, Koga T, Iwanaga S, Hirata M (1992) Putative inositol 1,4,5-trisphosphate binding proteins in rat brain cytosol. J Biol Chem 267:6518–6525PubMedGoogle Scholar
  50. Karlovich CA, Bonfini L, McCollam L, Rogge RD, Daga A, Czech MP, Banerjee U (1995) In vivo functional analysis of the Ras exchange factor Son of Sevenless. Science 268:576–579PubMedCrossRefGoogle Scholar
  51. Klarlund JK, Guilherme A, Holik JJ, Virbasius A, Czech MP (1997) Signaling by 3,4,5-phosphoinositide through proteins containing pleckstrin and Sec7 homology domains. Science (in press)Google Scholar
  52. Klippel A, Reinhard C, Kavanaugh WM, Apell G, Escobedo M-A, Williams LT (1996) Membrane localization of phosphatidylinositol 3-kinase is sufficient to activate multiple signal-transducing pathways. Mol Cell Biol 16:4117–4127PubMedGoogle Scholar
  53. Klippel A, Kavanaugh WM, Pot D, Williams LT (1997) A specific product of phosphatidylinositol 3-kinase directly activates the protein kinase Akt through its pleckstrin homology domain. Mol Cell Biol 17:338–344PubMedGoogle Scholar
  54. Koch WJ, Inglese J, Stone WC, Lefkowitz RJ (1993) The binding site for the jfy subunits of heterod-trimeric G protein on the β-adrenergic receptor kinase. J Biol Chem 268:8256–8260PubMedGoogle Scholar
  55. Koch WJ, Hawes BE, Inglese J, Luttrell LM, Lefkowitz RJ (1994) Cellular expression of the carboxy terminus of a G protein-coupled receptor kinase attenuates Gßγ-mediated signaling. J Biol Chem 269:6193–6197PubMedGoogle Scholar
  56. Kohn AD, Kovacina KS, Roth RA (1995) Insulin stimulates the kinase activity of RAC-PK, a pleckstrin homology domain containing Ser/Thr kinase. EMBO J 14:4288–4295PubMedGoogle Scholar
  57. Kohn AD, Takeuchi F, Roth RA (1996) Akt, a pleckstrin homology domain containing kinase, is activated primarily by phosphorylation. J Biol Chem 271:21920–21926PubMedCrossRefGoogle Scholar
  58. Kolanus W, Nagel W, Schiller B, Zeitlmann L, Godar S, Stockinger H, Seed B (1996) aLb2 integrin/ LFA-1 binding to ICAM-1 induced by cytohesin-1, a cytoplasmic regulatory molecule. Cell 86: 233–242PubMedCrossRefGoogle Scholar
  59. Konishi H, Kuroda S, Kikkawa U (1994) The pleckstrin homology domain of Rac protein kinase associates with the regulatory domain of protein kinase-C ζ. Biochem Biophys Res Commun 205:1770–1775PubMedCrossRefGoogle Scholar
  60. Konishi H, Kuroda S, Tanaka M, Matsuzaki H, Ono Y, Kameyama K, Haga T, Kikkawa U (1995) Molecular cloning and characterization of a new member of the RAC protein kinase family: association of the pleckstrin homology domain of three types of RAC protein kinase with protein kinase C subspecies and beta gamma subunits of G proteins. Biochem Biophys Res Commun 216:526–534PubMedCrossRefGoogle Scholar
  61. Konishi H, Matsuzaki H, Tanaka M, Ono Y, Tokunaga C, Kuroda S, Kikkawa U (1996) Activation of RAC-protein kinase by heat shock and hyperosmolarity stress through a pathway independent of phosphatidylinositol 3-kinase. Proc Natl Acad Sci USA 93:7639–7643PubMedCrossRefGoogle Scholar
  62. Kraulis P (1991) MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24:946–950CrossRefGoogle Scholar
  63. Kubiseski TJ, Chook YM, Parris WE, Rozakis-Adcock M, Pawson T (1997) High affinity binding of the pleckstrin homology domain of mSosl to phosphatidylinositol (4,5)-bisphosphate. J Biol Chem 272:1799–1804PubMedCrossRefGoogle Scholar
  64. Langhans-Rajasekaran SA, Wan Y, Huang X-Y (1995) Activation of Tsk and Btk tyrosine kinase by G protein py subunits. Proc Natl Acad Sci USA 92:8601–8605PubMedCrossRefGoogle Scholar
  65. Lemmon MA, Ferguson KM, O’Brien R, Sigler PB, Schlessinger J (1995) Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc Natl Acad Sci USA 92:10472–10476PubMedCrossRefGoogle Scholar
  66. Lemmon MA, Ferguson KM, Schlessinger J (1996) PH domains: diverse sequences with a common fold recruit signaling molecules to the cell surface. Cell 85:621–624PubMedCrossRefGoogle Scholar
  67. Li T, Tsukuda S, Satterthwiate A, Havlik MH, Park H, Takatsu K, Witte ON (1995) Activation of Bruton’s tyrosine kinase (BTK) by a point mutation in its pleckstrin homology (PH) domain. Immunity 2:451–460PubMedCrossRefGoogle Scholar
  68. Lifshitz B, Fainstein E, Marcelle C, Shtivelman E, Amson R, Gale RP, Canaani E (1988) bcr genes and transcripts. Oncogene 2:113–117PubMedGoogle Scholar
  69. Lomasney JW, Cheng H-F, Wang L-P, Kuan Y-S, Liu S-M, Fesik SW, King K (1996) Phosphatidylinositol 4,5-bisphosphate binding to the pleckstrin homology domain of phospholipase C-δ1 enhances enzyme activity. J Biol Chem 271:25316–25326PubMedCrossRefGoogle Scholar
  70. Lombardo CR, Weed SA, Kennedy SP, Forget BG, Morrow JS (1994) βII-spectrin (fodrin) and βIS2-spectrin (muscle) contain NH2- and COOH-terminal membrane association domains (MAD1 and MAD2). J Biol Chem 269:29212–29219PubMedGoogle Scholar
  71. Luttrell LM, Hawes BE, Touhara K, van Biesen T, Koch WJ, Lefkowitz RJ (1995) Effect of cellular expression of pleckstrin homology domains on Gj-coupled receptor signaling. J Biol Chem 270:12984–12989PubMedCrossRefGoogle Scholar
  72. Macias MJ, Musacchio A, Ponstingl H, Nilges M, Saraste M, Oschkinat H (1994) Structure of the pleckstrin homology domain from p-spectrin. Nature 369:675–677PubMedCrossRefGoogle Scholar
  73. Mahadevan D, Thanki N, Singh J, McPhie P, Zangrilli D, Wang L-M, Guerrero C, LeVine H, Humblet C, Saldanha J, Gutkind JS, Najmabadi-Haske T (1995) Structural studies on the PH domains of Dbl, Sosl, IRS-1, and PARKl and their differential binding to Gpy subunits. Biochemistry 34:9111–9117PubMedCrossRefGoogle Scholar
  74. Mano H, Ishikawa F, Nishida J, Hirai H, Takaku F (1990) A novel protein-tyrosine kinase, tec, is preferentially expressed in liver. Oncogene 5:1781–1786PubMedGoogle Scholar
  75. Margolis B, Silvennoinen O, Comoglio F, Roonprapunt C, Skolnik EY, Ullrich A, Schlessinger J (1992) High-efficiency expression cloning of epidermal growth factor receptor-binding proteins with Src homology domains. Proc Natl Acad Sci USA 89:8894–8898PubMedCrossRefGoogle Scholar
  76. Mattsson PT, Vihinen M, Smith CIE (1996) X-linked agammaglobulinemia (XLA): a genetic tyrosine kinase (Btk) disease. Bioessays 18:825–834PubMedCrossRefGoogle Scholar
  77. Mayer BJ, Ren R, Clark KL, Baltimore D (1993) A putative modular domain present in. diverse signaling molecules. Cell 73:629–630PubMedCrossRefGoogle Scholar
  78. McCollam L, Bonfini L, Karlovich CA, Conway BR, Kozma LM, Banerjee U, Czech MP (1995) Functional roles for the pleckstrin and Dbl homology regions in the Ras exchange factor Son-of-sevenless. J Biol Chem 270:15954–15957PubMedCrossRefGoogle Scholar
  79. Musacchio A, Gibson T, Rice P, Thompson J, Saraste M (1993) The PH domain: a common piece in a pathwork of signalling proteins. Trends Biochem Sci 18:343–348PubMedCrossRefGoogle Scholar
  80. Myers MG Jr, Grammer TC, Brooks J, Glasheen EM, Wang L-M, Sun XJ, Blenis J, Pierce JH, White MF (1995) The pleckstrin homology domain in insulin receptor substrate-1 sensitizes insulin signaling. J Biol Chem 270:11715–11718PubMedCrossRefGoogle Scholar
  81. Nicholls A, Shap KA, Honig B (1991) Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct Funct Genet 11:281–296PubMedCrossRefGoogle Scholar
  82. Nielsen M, Svejgaard A, Skov S, Dobson P, Bendtzen K, Geisler C, Odum N (1996) IL-2 induces β2 integrin adhesion via a wortmannin/LY294002-sensitive, rapamycin-resistant pathway Phosphorylation of a 125-kilodalton protein correlates with induction of adhesion, but not mitogenesis. J Immunol 157:5350–5358PubMedGoogle Scholar
  83. Parker PJ, Hemmings BA, Gierschik P (1994) PH domains and phospholipases - a meaningful relationship? Trends Biochem Sci 19:54–55PubMedCrossRefGoogle Scholar
  84. Paterson HF, Savopoulos JW, Perisic O, Cheung R, Ellis MV, Williams RL, Katan M (1995) Phospholipase C-δ1 requires a pleckstrin homology domain for interaction with the plasma membrane. Biochem J 312:661–666PubMedGoogle Scholar
  85. Pitcher JA, Inglese J, Higgins JB, Arriza JL, Casey PJ, Kim C, Benovic JL, Kwatra MM, Caron MG, Lefkowitz RJ (1992) Role of ßγ subunits of heterotrimeric G proteins in targeting the p-adrenergic receptor kinase to membrane-bound receptors. Science 257:1264–1267PubMedCrossRefGoogle Scholar
  86. Pitcher J A, Touhara K, Payne ES, Lefkowitz RJ (1995) Pleckstrin homology domain-mediated membrane association and activation of the p-adrenergic receptor kinase requires coordinate interaction with Gßγ subunits and lipid. J Biol Chem 270:11707–11710PubMedCrossRefGoogle Scholar
  87. Ramirez F, Jain MK (1991) Phospholipase A2 at the bilayer interface. Proteins Struct Funct Genet 9: 229–239PubMedCrossRefGoogle Scholar
  88. Rebecchi M, Peterson A, McLaughlin S (1992) Phosphoinositide-specific phospholipase C-δ1 binds with high affinity to phospholipid vesicles containing phosphatidylinositol 4,5-bisphosphate. Biochemistry 31:12742–12747PubMedCrossRefGoogle Scholar
  89. Richardson J (1977) p-Sheet topology and the relatedness of proteins. Nature 268:495–500PubMedCrossRefGoogle Scholar
  90. Ron D, Tronick SR, Aaronson SA, Eva A (1988) Molecular cloning and characterization of the human dbl proto-oncogene: evidence that its overexpression is sufficient to transform NIH/3T3 cells. EMBO J 7:2465–2473PubMedGoogle Scholar
  91. Salim K, Bottomley MJ, Querfurth E, Zvelebil MJ, Gout I, Scaife R, Margolis RL, Gigg R, Smith CIE, Driscoll PC, Waterfield MD, Panayotou G (1996) Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and the Bruton’s tyrosine kinase. EMBO J 15:6241–6250PubMedGoogle Scholar
  92. Schlessinger J (1994) SH2/SH3 signaling proteins. Curr Opin Genet Dev 4:25–30PubMedCrossRefGoogle Scholar
  93. Scott DL, Mandel AM, Sigler PB, Honig B (1994) The electrostatic basis for the interfacial binding of secretory phospholipases A2. Biophys J 67:493–504PubMedCrossRefGoogle Scholar
  94. Shaw G (1993) Identification of novel pleckstrin homology (PH) domain provides a hypothesis for PH domain function. Biochem Biophys Res Commun 195:1145–1151PubMedCrossRefGoogle Scholar
  95. Shaw G (1996) The pleckstrin homology domain: an intriguing multifunctional protein module. Bioessays 18:35–46PubMedCrossRefGoogle Scholar
  96. Shou C, Farnsworth CL, Neel BG, Feig LA (1992) Molecular cloning of cDNAs encoding a guanine-nucleotide-releasing factor for Ras p21. Nature 358:351–354PubMedCrossRefGoogle Scholar
  97. Siliciano JD, Morrow TA, Desiderio SV (1992) Itk, a T-cell specific tyrosine kinase gene inducible by interleukin 2. Proc Natl Acad Sci USA 89:11194–11198PubMedCrossRefGoogle Scholar
  98. Sontag J-M, Fyske EM, Ushkaryov Y, Liu J-P, Robinson PJ, Südhof TC (1994) Differential expression and regulation of multiple dynamins. J Biol Chem 269:4747–4754Google Scholar
  99. Suh P, Ryu S, Moon K, Suh H, Rhee S-G (1988) Cloning and sequence of multiple forms of phospholipase C. Cell 54:161–169PubMedCrossRefGoogle Scholar
  100. Sun XJ, Rothenberg P, Kahn CR, Backer JM, Araki E, Wilden PA, Cahill DA, Goldstein BJ, White MF (1991) Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 352:73–77PubMedCrossRefGoogle Scholar
  101. Thomas JD, Sideras P, Smith CIE, Vorechovsky I, Chapman V, Paul WE (1993) Colocalization of X-linked agammaglobulinemia and X-linked immunodeficiency genes. Science 261:355–358PubMedCrossRefGoogle Scholar
  102. Timm D, Salim K, Gout I, Guruprasad L, Waterfield M, Blundell T (1994) Crystal structure of the pleckstrin homology domain from dynamin. Nature Struct Biol 1:782–788PubMedCrossRefGoogle Scholar
  103. Touhara K, Inglese J, Pitcher J A, Shaw G, Lefkowitz RJ (1994) Binding of G protein ßγ-subunits to pleckstrin homology domains. J Biol Chem 269:10217–10220PubMedGoogle Scholar
  104. Trahey M, Wong G, Halenbeck R, Rubinfeld B, Martin GA, Ladner M, Long CM, Crosier WJ, Watt K, Koths K, McCormick F (1988) Molecular cloning of two types of GAP complementary DNA from human placenta. Science 242:1697–1700PubMedCrossRefGoogle Scholar
  105. Tsukuda S, Simon MI, Witte ON, Katz A (1994) Binding of ßγ subunits of heterotrimeric G-proteins to the PH domain of Bruton’s tyrosine kinase. Proc Natl Acad Sci USA 91:11256–11260CrossRefGoogle Scholar
  106. Tyers M, Rachubinski RA, Stewart MI, Varrichio AM, Shorr RGL, Haslam RJ, Harley CB (1988) Molecular cloning and expression of the major protein kinase C substrate of platelets. Nature 333:470–473PubMedCrossRefGoogle Scholar
  107. van der Bliek AM, Redelmeister TE, Damke H, Tisdale EJ Meyerowitz EM, Schmid SJ (1993) Mutations in human dynamin block, an intermediate stage in coated vesicle formation. J Cell Biol 122:553–563PubMedCrossRefGoogle Scholar
  108. Vetrie D, Vorechovsky I, Sideras P, Holland J, Davies A, Flinter F, Hammarstrom L, Kinnon C, Levinsky R, Bobrow M, Smith CIE, Bentley DR (1993) The gene involved in X-linked agamma-globulinaemia is a member of the sre family of protein-tyrosine kinases. Nature 361:226–233PubMedCrossRefGoogle Scholar
  109. Vihinen M, Zvelebil MJJM, Zhu Q, Brooimans RA, Ochs HD, Zegers BJM, Nilsson L, Waterfield MD, Smith CIE (1995) Structural basis for pleckstrin homology domain mutations in X-linked agammaglobulinemia. Biochemistry 34:1475–1481PubMedCrossRefGoogle Scholar
  110. Voliovitch H, Schindler DG, Hadari YR, Taylor SI, Accili D, Zick Y (1995) Tyrosine phosphorylation of insulin receptor substrate-1 in vivo depends upon the presence of its pleckstrin homology region. J Biol Chem 270:18083–18087PubMedCrossRefGoogle Scholar
  111. Wang D-S, Shaw G (1995) The association of the C-terminal region of ßIΣII spectrin to brain membrane is mediated by a PH domain, does not require membrane proteins, and coincides with a inositol-145-trisphosphate binding site. Biochem Biophys Res Commun 217:608–615PubMedCrossRefGoogle Scholar
  112. Wang D-S, Shaw R, Winkelmann JC, Shaw G (1994) Binding of PH domains of ß-adrenergic receptor kinase and ß-spectrin to WD40/b-transducin repeat containing regions of the ß-subunit of trimeric G-proteins. Biochem Biophys Res Commun 203:29–35PubMedCrossRefGoogle Scholar
  113. Wang W, Fisher EMC, Jia Q, Dum JM, Porfiri E, Downward J, Egan SE (1995) The Grb2 binding domain of mSosl is not required for downstream signal transduction. Nature Genetics 10:294–300PubMedCrossRefGoogle Scholar
  114. Wang D-S, Miller R, Shaw R, Shaw G (1996) The pleckstrin homology domain of human ßIΣII spectrin is targeted to the plasma membrane in vivo. Biochem Biophys Res Commun 225:420–426PubMedCrossRefGoogle Scholar
  115. Whitehead I, Kirk H, Tognon C, Trigo-Gonzalez G, Kay R (1995) Expression cloning of lfc, a novel oncogene with structural similarities to guanine nucleotide exchange factors and to the regulatory region of protein kinase C. J Biol Chem 270:18388–18395PubMedCrossRefGoogle Scholar
  116. Woolfson DN, Evans PA, Hutchinson EG, Thornton JM (1993) Topological and stereochemical restrictions in ß-sandwich protein structures. Protein Eng 5:461–470CrossRefGoogle Scholar
  117. Yagisawa H, Hirata M, Kanematsu T, Watanabe Y, Ozaki S, Sakuma K, Tanaka H, Yabuta N, Kamata H, Hirata H, Nojima H (1994) Expression and characterization of an inositol 1,4,5-trisphosphate binding domain of phosphatidylinositol-specific phospholipase C-δ1. J Biol Chem 269:20179–20188PubMedGoogle Scholar
  118. Yang W, Desiderio S (1997) BAP-135, a target for Bruton’s tyrosine kinase in response to B cell receptor engagement. Proc Natl Acad Sci USA 94:604–609PubMedCrossRefGoogle Scholar
  119. Yao L, Kawakami Y, Kawakami T (1994) The pleckstrin homology domain of Bruton tyrosine kinase interacts with protein kinase C. Proc Natl Acad Sci USA 91:9175–9179PubMedCrossRefGoogle Scholar
  120. Yenush L, Makati KJ, Smith-Hall J, Ishibashi O, Myers MG, White MF (1996) The pleckstrin homology domain is the principal link between the insulin receptor and IRS-1. J Biol Chem 271:24300–24306PubMedCrossRefGoogle Scholar
  121. Yoon HS, Hajduk PJ, Petros AM, Olejniczak ET, Meadows RP, Fesik SW (1994) Solution structure of a pleckstrin-homology domain. Nature 369:672–675PubMedCrossRefGoogle Scholar
  122. Zhang P, Talluri S, Deng H, Branton D, Wagner G (1995) Solution structure of the pleckstrin homology domain of Drosophila beta-spectrin. Structure 3:1185–1195PubMedCrossRefGoogle Scholar
  123. Zheng J, Cahill SM, Lemmon MA, Fushman D, Schlessinger J, Cowburn D (1996) Identification of the binding site for acidic phospholipids on the PH domain of dynamin: implications for stimulation of GTPase activity. J Mol Biol 255:14–21PubMedCrossRefGoogle Scholar
  124. Zheng Y, Zangrilli D, Cerione RA, Eva A (1996) The pleckstrin homology domain mediates transformation by oncogenic Dbl through specific intracellular targeting. J Biol Chem 271: 19017–19020PubMedCrossRefGoogle Scholar
  125. Zhou M-M, Ravichandran KS, Olejniczak ET, Petros AM, Meadows RP, Sattler M, Harlan JE, Wade WS, Burakoff SJ, Fesik SW (1995) Structure and ligand recognition of the phosphotyrosine binding domain of She. Nature 378:584–592PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • M. A. Lemmon
    • 1
  • K. M. Ferguson
    • 1
  1. 1.Department of Biochemistry and BiophysicsUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations