Electronic Topological Transitions in Elemental Metals and Compounds

  • B. K. Godwal
  • R. S. Rao
  • S. K. Sikka
Conference paper


We present results of our electronic structure calculations and high pressure experimental studies of the angle dispersive X-ray diffraction, electrical resistivity, and thermoelectric power on Zn, Cd, AuIn2 and YNi2B2C. We focus on some of the observed anomalies at high pressures and find that the isostructural electronic topological transitions are responsible for them.


Electrical Resistivity Thermoelectric Power Electronic Structure Calculation Diamond Anvil Cell Electronic Topological Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For details and references, see B.K.Godwal, Curr. Sci. 68, 1087 (1995).Google Scholar
  2. 2.
    R.S. Rao, B.K. Godwal and S.K. Sikka, Phvs. Rev. B46, 5780 (1992).ADSCrossRefGoogle Scholar
  3. 3.
    I.M.Lifshitz, Sov. Phys. JETP, 11, 1130 (1960);Google Scholar
  4. I.M.Lifshitz, J.Exptl.Theoret, Phys. 38, 1569 (1960)Google Scholar
  5. L.Dagens, J.Phys. F: Metal Phys., 8, 2093 (1978).ADSCrossRefGoogle Scholar
  6. 4.
    S. Meenakshi, V. Vijayakumar, B.K. Godwal, and S.K. Sikka, Phys. Rev. B46, 14359 (1992).ADSCrossRefGoogle Scholar
  7. 5.
    K. Takemura, Phys. Rev. Lett. 75, 1807 (1995).CrossRefGoogle Scholar
  8. 6.
    W. Potzel, W. Adlassnig, J. Moser, C. Schafer, M. Steiner, and G.M. Kalvius, Phys. Rev. B39, 8236 (1989)ADSCrossRefGoogle Scholar
  9. 7.
    S. Daniuk, T. Jarlborg, G. Kontrym-Sznajd, J. Majsnerowski, and H. Stachowiak, J. Phys.: Condens. Matter 1, 8397 (1989).ADSCrossRefGoogle Scholar
  10. 8.
    W. Potzel, M. Steiner, H. Karzel, W.Schiessl, M. Kofferlein, G.M. Kalvius, and P. Blaha, Phys. Rev. Lett. 74, 1139 (1995).ADSCrossRefGoogle Scholar
  11. 9.
    J.G.Morgan, R.B.Von Dreele, P.Wochner, and S.M.Shapiro, Phys. Rev. B54, 812 (1996).ADSCrossRefGoogle Scholar
  12. 10.
    R.W. Lynch and H.G. Drickamer, J. Phys. Chem. Solids 26, 63 (1965).ADSCrossRefGoogle Scholar
  13. 11.
    K. Takemura, to be published.Google Scholar
  14. 12.
    O.K. Andersen, Phys. Rev. B12, 3060 (1975);ADSCrossRefGoogle Scholar
  15. H.L. Skriver, The LMTO Method, Springer, Berlin (1984);Google Scholar
  16. N.E. Christensen, Phys. Rev. B32, 207 (1987).ADSCrossRefGoogle Scholar
  17. 13.
    U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972).ADSCrossRefGoogle Scholar
  18. 14.
    The calculations were also carried out by suppressing the combined correction to the ASA. However, it failed to produce a minimum in the total energy versus c/a curve with compression.Google Scholar
  19. 15.
    D. Glötzel and O.K. Andersen (unpublished); E. E.posito, A.E. Carlsson, D.D. Ling, M. Ehrenreich, and C.D. Gelatt, Jr., Philos. Mag. A41, 251 (1980);H.L. Skriver, Phys. Rev. B31, 1909 (1985).Google Scholar
  20. 16.
    S. L. Bud’ko, A.N. Voronovskii, A.G. Gapotchenko, and E.S. Itskevich, Zh. Eksp. Teor. Fiz. 86, 778 (1984) [Sov. Phys. JETP 59, 454 (1984)].Google Scholar
  21. 17.
    D.F. Gibbons, and L.M. Falicov, Phil. Mag. 8, 177 (1963).ADSCrossRefGoogle Scholar
  22. 18.
    V. Vijayakumar, R.S. Rao and B.K. Godwal, to be published.Google Scholar
  23. 19.
    O. Schulte, A. Nikolaenko, and W.B. Holzapfel, High Pressure Res. 6, 169 (1991).ADSCrossRefGoogle Scholar
  24. 20.
    S. Meenakshi, B.K. Godwal, R.S. Rao, and V. Vijayakumar, Phys. Rev. B50, 6569 (1994).ADSCrossRefGoogle Scholar
  25. 21.
    A.R. Storm, J.H. Wernick, and A. Jayaraman, J. Phys. Chem. Solids, 27, 1227 (1966).ADSCrossRefGoogle Scholar
  26. 22.
    S. Meenakshi, B.K. Godwal, V. Vijayakumar, R.S. Rao, A. Jayaraman, and S.K. Sikka, Solid State Phys. (India), 38C, 367 (1995).Google Scholar
  27. 23.
    B.K. Godwal, in Advances in High Pressure Science and Technology, edited by A.K. Singh, Tata McGraw-Hill, New Delhi (1995).Google Scholar
  28. 24.
    J.C. Slater, Phys. Rev. 81, 385 (1951).ADSMATHCrossRefGoogle Scholar
  29. 25.
    C. Mazumdar, R. Nagarajan, C. Godart, L.C. Gupta, M. Latroche, S.K. Dhar, C. Levy-Clement, B.D. Padaliaand R. Vijayaraghavan, Sol. St. Comm. 87, 413 (1993).ADSCrossRefGoogle Scholar
  30. 26.
    R. Nagarajan, C. Mazumdar, Z. Hossain, S.K. Dhar, K.V. Gopalakrishnan, L.C. Gupta, C. Godart, B.D. Padalia and R. Vijayaraghavan, Phys. Rev. Lett., 72, 274 (1994).ADSCrossRefGoogle Scholar
  31. 27.
    R.J. Cava, H. Takagi, H.W. Zandbergen, J.J. Krajewski, W.F. Peck, T. Siegrist, B. Batlogg, R.B. Van Dover, R.J. Felder, K. Mizuhashi, J.O. Lee, H. Elsaki and S. Uchida, Nature 367, 252 (1994).ADSCrossRefGoogle Scholar
  32. 28.
    V. Vijayakumar, B.K. Godwal, Y.K. Vohra, S.K. Sikka and R. Chidambaram, J.Phys.F 14, L65 (1984).ADSCrossRefGoogle Scholar
  33. 29.
    S. Meenakshi, V. Vijayakumar, B.K. Godwal, S.K. Sikka, Z. Hossain, R. Nagarajan, L.C. Gupta and R. Vijayaraghavan, Physica B 223 & 224, 93 (1996); The IP system is based on a 425E Molecular Dynamics phosphor imager model;CrossRefGoogle Scholar
  34. O. Shimomura and K. Takemura, Rev. Sci. Instrum. 63, 967 (1992).ADSCrossRefGoogle Scholar
  35. 30.
    O.K. Andersen and O. Jepsen, Phys. Rev. Lett., 53, 2571 (1984).ADSCrossRefGoogle Scholar
  36. 31.
    B.C. Chakoumakos and M. Paranthaman, Physica C227, 143 (1994).ADSCrossRefGoogle Scholar
  37. 32.
    Our earlier calculations [Ref.29], with the atomic radii ratios of Y : Ni : B : C = 1.0 : 0.833 : 0.5 :0.474 in accordance with those of LuNi2B2C [Ref. 33], had predicted a higher lattice constant at ambient pressure and given the bulk modulus as 270 GPa. The present choice gives the equilibrium lattice constant within 1.5 % of the experimental estimates.Google Scholar
  38. 33.
    W.E. Pickett, and D.J. Singh, Phys. Rev. Lett., 72, 3702 (1994).ADSCrossRefGoogle Scholar
  39. 34.
    P. Ravindran, S. Shankaralingam, and R. Asokamani, Phys. Rev. B, 52, 12921 (1995). Their revised calculations, howTever, give the bulk modulus to be about 180 GPa (P.Ravindran et al, to be published, private communication).Google Scholar
  40. 35.
    F.J. Blatt, P.A. Schroeder, C.L. Foiles and D. Greig, Thermoelectric Power of Metals, Plenum Press, New York (1976).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • B. K. Godwal
    • 1
  • R. S. Rao
    • 1
  • S. K. Sikka
    • 1
  1. 1.High Pressure Physics DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations