Deposition of Ga and As Adatoms on the Ge (111) and Si (111) Surfaces: A First-Principles Study

  • C. Cheng
  • K. Kunc
Conference paper


The (1×1) and (\(\sqrt 3 \times \sqrt 3 \))R30° (T4) structures of Ga and As adatoms on the Ge(111) and Si(111) surfaces are studied using the first-principles calculations. The surface energetics predicts, in some cases, a transformation of the T4 structure (surface covered with 1/3 monolayer (ML) of adatoms) into domains of the 1-ML covered (1×1) structure and areas of clean reconstructed surface. For As adatoms, such phase separation is favored on both substrates, while for Ga adatoms, it is only preferred on the Ge(111) surfaces. These results are compared with experimental observations.


Phase Separation Adsorption Energy Uniform Coverage Segregation Energy Translational Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Cheng and K. Kunc, Appl. Surf. Sci. Vol.65 (1993) 603; ibid., Vol92 (1996) 496; Surface Science (1996), in press; and ibid., to be published.ADSCrossRefGoogle Scholar
  2. 2.
    J.M. Nicholls, B. Reihl and J.E. Northrup, Phys. Rev. Vol.B35 4137 (1987);ADSGoogle Scholar
  3. 3.
    P. Molinas-Mata and J. Zegenhagen, Phys. Rev. Vol.B47 (1993) 10319;ADSGoogle Scholar
  4. M. Bohringer, P. Molinas-Mata, J. Zegenhagen, G. Falkenberg, L. Seehofer, L. Lottermoser, R. L. Johnson and R. Feidenhans, Phys. Rev. B Vol.52 (1995) 1948;ADSCrossRefGoogle Scholar
  5. E. Artacho, P. Molinas-Mata, M. Bohringer, J. Zegenhagen, G.E. Franklin and J.R. Patel, Phys. Rev. B Vol.51 (1995) 9952;ADSCrossRefGoogle Scholar
  6. M. Bohringer, P. Molinas-Mata, E. Artacho and J. Zegenhagen, Phys. Rev. B Vol.51 (1995) 9965.ADSCrossRefGoogle Scholar
  7. 4.
    R. D. Bringans, R.I.G. Uhrberg, R.Z. Bachrach and J.E. Northrup, Phys. Rev. Lett. Vol.55 (1985) 533;ADSCrossRefGoogle Scholar
  8. J.R. Patel, J.A. Golovchenko, P.E. Freeland and H-J. Gossmann, Phys. Rev. Vol.B36 (1987) 7715;ADSGoogle Scholar
  9. J.E. Northrup, Bull. Am. Phys. Soc. Vol.32 (1987) 720Google Scholar
  10. 5.
    M.A. Olmstead, R.D. Bringans, R.I.G. Uhrberg and R.Z. Bachrach, Phys. Rev. Vol.B34 (1986) 6401Google Scholar
  11. 6.
    R.D. Meade and D. Vanderbilt, Phys. Rev. Lett. Vol.63 (1989) 1404ADSCrossRefGoogle Scholar
  12. 7.
    N. Takeuchi, A. Selloni, E. Tosatti, Phys. Rev. Lett. Vol. 69 (1992) 648ADSCrossRefGoogle Scholar
  13. 8.
    I. Stich, M.C. Payne, R.D. King-Smith, J.-S. Lin and L.J. Clarke, Phys. Rev. Lett. Vol.68 (1992) 1351ADSCrossRefGoogle Scholar
  14. 9.
    K.D. Brommer, M. Needels, B.E. Larson and J.D. Joannopoulos, Phys. Rev. Lett. Vol.68 (1992) 1355ADSCrossRefGoogle Scholar
  15. 10.
    As the Si(111)(7×7) surface energies quoted in Refs. [8] and [9] (+1.153 and +1.179 eV/((1×1) cell), respectively) are given with respect to the bulk, whereas all the surface energies in the present work are counted with respect to the ideal surface, we have calculated the surface energy of the ideal (1×1) surface with respect to the bulk, with the result +1.594 (+1.377) eV per (1×1) cell of Si (Ge) at 8 Ry cutoff. This situates the Si(111)(7×7) surface energy at -0.44 or -0.42 eV/((1×1) cell), under the energy of the ideal surface.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • C. Cheng
    • 1
  • K. Kunc
    • 2
  1. 1.Department of PhysicsNational Cheng Kung UniversityTainanTaiwan, China
  2. 2.Laboratoire de Physique des Solides associé au CNRSParis-Cedex 05France

Personalised recommendations