Advertisement

Human Immunodeficiency Virus Immunotherapy Using a Retroviral Vector

  • J. F. Warner
  • D. J. Jolly
  • J. Merritt
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 226)

Abstract

Gene transfer technology is an effective means of introducing genes and ultimately providing immunogenic proteins for activation of the immune response. Conventional immunization procedures are capable of providing proteins to the exogenous antigen presentation pathway for activation of CD4+ T cells and eventual antibody production. However, intracellular synthesis of foreign proteins appears to favor optimal antigen processing/presentation events involved in the consistent activation of CD8+ cytotoxic T lymphocytes (CTLs) (Braciale et al. 1987; Germain and Margulies 1993) which recognize antigen in the context of class I major histocompatibility complex (MHC) molecules. Gene transfer systems, thus, may provide a consistent way of delivering protein antigens to the endogenous antigen presentation pathway for activation of cellular immunity, particularly CTL activation.

Keywords

Human Immunodeficiency Virus Human Immunodeficiency Virus Type Simian Immunodeficiency Virus Gene Transfer Technology Immune Response Induction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boshart M, Weber F, Jahn G, Dorsch-Hasler K, Fleckenstein B, Schaffner W (1985) A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41:521–530PubMedCrossRefGoogle Scholar
  2. Braciale TJ, Morrison LA, Sweetser MT, Sambrook J, Gething M-J, Braciale VL (1987) Antigen presentation pathways of class I and class II MHC-restricted T lymphocytes. Immunol Rev 98:95–114PubMedCrossRefGoogle Scholar
  3. Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci USA 90:8033–8037PubMedCrossRefGoogle Scholar
  4. Carmichael A, Jin X, Sissons P, Borysiewicz L (1993) Quantitative analysis of the human immunodeficiency virus type I (HIV-I)-specific cytotoxic T lymphocyte (CTL) response at different stages of HIV- I infection: differential CTL responses to HIV- I and Epstein Barr virus in late disease. J Exp Med 177:249–256PubMedCrossRefGoogle Scholar
  5. Chada S, Dejesus CE, Townsend K, Lee WTL, Laube L, Jolly DJ, Chang SMW, Warner JF (1993) Cross-reactive lysis of human targets infected with prototypic and clinical human immunodeficiency virus type I (HIV- 1) strains my murine anti-HIV-1 IIIB env-specific cytotoxic T lymphocytes. J Virol 67:3409–3417PubMedGoogle Scholar
  6. Connor RI, Mohri H, Cao Y, Ho DD (1993) Increased viral burden and cytopathicity correlate temporally with CD4+ T-lymphocyte decline and clinical progression in human immunodeficiency virus type 1-infected individuals. J Virol 67:1772–1778PubMedGoogle Scholar
  7. Germain RN, Margulies DH (1993) The biochemistry and cell biology of antigen processing and presentation. Annual Rev Immunol 11:403–450CrossRefGoogle Scholar
  8. Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M (1995) Rapid turnover of plasma virions and CD4 lymphocytes in HIV- I infection. Nature 373:123–126PubMedCrossRefGoogle Scholar
  9. Hoffenbach A, Langlade-Demoyen P, Dadaglio G, Vilmer E, Michel F, Mayaud C, Autran B, Plata F (1989) Unusually high frequencies of HIV-specific cytotoxic T lymphocytes in humans. J Immunol 142:452–460PubMedGoogle Scholar
  10. Irwin MJ, Laube LS, Lee V, Austin M, Chada S, Anderson C-G, Townsend K, Jolly DJ, Warner JF (1994) Direct injection of a recombinant retroviral vector induces human immunodeficiency virus- specific immune responses in mice and nonhuman primates. J Virol 68:5036–5044PubMedGoogle Scholar
  11. Kast WM, Bronkhorst AM, De Waal LP, Melief CJM (1986) Cooperation between cytotoxic and helper T lymphocytes in protection against lethal Sendai virus infection. J Exp Med 164:723–738PubMedCrossRefGoogle Scholar
  12. Klavinskis LS, Whitton JL, Oldstone MBA (1989) Molecularly engineered vaccine which expresses an immunodominant T-cell epitope induces cytotoxic T lymphocytes that confer protection from lethal virus infection. J Virol 63:4311–4316PubMedGoogle Scholar
  13. Koenig S, Conley AJ, Brewah YA, Jones GW, Leath S, Boots LJ, Davey V, Pantaleo G, Dewarest JF, Carter C, Wannebo C, Yanneli JR, Rosenberg SA, Lane HC (1995) Transfer of HIV-I specific cytotoxic T lymphocytes to an AIDS patient leads to selection for mutant HIV variants and subsequent disease progression. Nature Med 1:330–336PubMedCrossRefGoogle Scholar
  14. Koup RA, Safrit JT, Cao Y, Andrews CA, Mcleod G, Borkowsky W, Farthing C, Ho DD (1994) Temporal association of cellular immune responses with the initial control of viremia in primary HIV-I syndrome. J Virol 68:4550–4559Google Scholar
  15. Lander MR, Chattopadhyay SK (1984) A Mus dunni cell line that lacks sequences closely related to endogenous murine leukemia viruses and can be infected by ecotropic, amphotropic, xenotropic, and mink cell focus-forming viruses. J Virol 52:695–698PubMedGoogle Scholar
  16. La Rosa GJ, Davide JP, Weinhold K, Waterbury JA, Profy AT, Lewis JA, Langlois AJ, Dreesman GR, Boswell RN, Shadduck P (1990) Conserved sequence and structural elements in the HIV- I principal neutralizing determinant. Science 249:932–935CrossRefGoogle Scholar
  17. Laube LS, Burrascano M, Dejesus CE, Howard BD, Johnson MA, Lee WTL, Lynn AE, Peters G, Ronlov GS, Townsend KS, Eason RL, Jolly DJ, Merchant B, Warner JF (1994) Cytotoxic T lymphocyte and antibody responses generated in rhesus monkeys immunized with retroviral vector- transduced fibroblasts expressing human immunodeficiency virus type-I IIIB envlrev proteins. Human Gene Therapy 5:853–862PubMedCrossRefGoogle Scholar
  18. Maddon PJ, Dalgleish AG, Mcdougal JS, Clapham PR, Weiss RA, Axel R (1986) The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47:333–348PubMedCrossRefGoogle Scholar
  19. Malim MH, Hauber J, Fenrick R, Cullen BR (1988) Immunodeficiency virus rev trans-activator modulates the expression of the viral regulatory genes. Nature 335:181–183PubMedCrossRefGoogle Scholar
  20. Moss (1988) Use of vaccinia virus vector for development of AIDS vaccines. AIDS S103–S105Google Scholar
  21. Patck PQ, Collins JL, Cohn M (1982) Activity and dexamethasone sensitivity of natural cytotoxic cell subpopulations. Cell Immunol 72:113–121CrossRefGoogle Scholar
  22. Peebles PT (1975) An in vitro focus induction assay for xenotropic murine leukemia virus, feline leukemia virus C and the feline-primate viruses RD-I 14/CCC/M-7. Virology 67:288–291PubMedCrossRefGoogle Scholar
  23. Price J, Turner D, Cepko C (1987) Lineage analysis in the vertebrate nervous system by retrovirusmediated gene transfer. Proc Natl Acad Sci USA 84:156–160PubMedCrossRefGoogle Scholar
  24. Printz M, Reynolds J, Mento SJ, Jolly D, Kowal K, Sajjadi N (1994) Recombinant retroviral vector interferes with the detection of amphotropic replication competent retrovirus in standard culture assays. Gene Ther 2:143–150Google Scholar
  25. Reddehase MJ, Mutter W, Munch K, Buhring H-J, Koszinowski UH (1987) CD8-positive T lymphocytes specific for murine cytomegalovirus immediate-early antigens mediate protective immunity. J Virol 61:3102–3108PubMedGoogle Scholar
  26. Reusser P, Riddel SR, Meyers JD, Greenberg PD (1991) Cytotoxic T-lymphocyte response to cytomegalovirus after human allogeneic bone marrow transplantation: pattern of recovery and correlation with cytomegalovirus infection and disease. Blood 78:13731380Google Scholar
  27. Riviere Y, Tanneau-Salvadori F, Regnault A, Lopez O, Sansonetti P, Guy B, Kieny M-P, Fournel J-J, Montagnier L (1989) Human immunodeficiency virus-specific cytotoxic responses of seropositive individuals: distinct effector cells mediate killing of targets expressing gag and env proteins. J Virol 63:2270–2277PubMedGoogle Scholar
  28. Robinson HL, Fynan EF, Webster RG (1993) Use of direct DNA inoculations to elicit protective immune responses. In: Vaccines 93 Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 311–315Google Scholar
  29. Rouse RT, Norley S, Martin S (1988) Anti-viral cytotoxic T lymphocyte induction and vaccination. Rev Infect Dis 10:16–33PubMedCrossRefGoogle Scholar
  30. Sajjadi N, Kamantigue E, Edwards W, Howard T, Jolly D, Mento S, Chada S (1994) Recombinant retroviral vector delivered intramuscularly localizes to the site of injection in mice. Human Gene Therapy 5:693–699PubMedCrossRefGoogle Scholar
  31. Schrager LK, Young JM, Fowler MG, Mathieson BJ, Vermund SH (1994) Long-term survivors of HIV-I infection: definitions and research challenges. AIDS 8 (suppl 1):S95–S108Google Scholar
  32. Takahashi H, Cohen J, Hosmalin A, Cease KB, Houghton R, Cornette JJ, DeLisa, C, Moss B, Germain R, Berzofsky JA (1988) An immunodominant epitope of the human immunodeficiency virus envelope glycoprotein gp 160 recognized by class I major histocompatibility complex molecule-restricted murine cytotoxic T lymphocytes. Proc Natl Acad Sci USA 85:3105–3109PubMedCrossRefGoogle Scholar
  33. Ulmer JB, Donnelly J, Parker SE, Rhodes GH, Feigner PL, Dwarki VL, Gromkowski SH, Deck R, Devitt CM, Friedman A, Hawe LA, Leander KR, Marinez D, Perry H, Shiver JW, Montgomery D, Liu MA (1993) Heterologous protection against influenza by injection of DNA encoding a viral protection. Science 259:1745–1749PubMedCrossRefGoogle Scholar
  34. Walker CM, Moody DJ, Stites DP, Levy JA (1986) CD8 + lymphocytes can control HIV infection in vitro by suppressing virus replication. Science 234:1563–1566PubMedCrossRefGoogle Scholar
  35. Wang B, Boyer J, Srikantan V, Coney L, Carrano R, Phan C, Merva M, Dang K, Agadjanyan M, Gilbert L, Ugen K, Williams VW, Weiner DB (1993) DNA inoculation induces neutralizing inunune responses against human immunodeficiency virus type I in mice and non-human primates. DNA Cell Biol 12:799–805PubMedCrossRefGoogle Scholar
  36. Warner JF, Anderson C-G, Laube L, Jolly DJ, Townsend K, Chada S, St. Louis D (1991) Induction of HIV-specific CTL and antibody responses in mice using retroviral vector-transduced cells. AIDS Res Hum Retroviruses 7:645–655PubMedCrossRefGoogle Scholar
  37. Wei X, Ghosh SK, Taylor ME, Johnson VA, Emini EA, Deutsch P, Lifson JD, Bonhoeffer S, Nowak MA, Hahn BH, Saag MS, Shaw GM (1995) Viral dynamics in human immunodeficiency virus type I infection. Nature 373:117–122PubMedCrossRefGoogle Scholar
  38. Yasutomi Y, Reimann KA, Lord CI, Miller MD, Letvin NL (1993) Simian immunodeficiency virus- specific CD8+ lymphocyte response in acutely infected rhesus monkeys. J Virol 67:1701–1711Google Scholar
  39. Ziegner UHM, Peters G, Jolly DJ, Mento SJ, Galpin J, Prussak CE, Barber JR, Hartnett DE, Bohart C, Klump W, Sajjadi N, Merchant B, Warner JF (1995) Cytotoxic T-lymphocyte induction in asymptomatic HIV-1-infected patients immunized with Retrovector-transduced autologous fibroblasts expressing HIV-1 IIIB envlrev proteins. AIDS 9:43–50PubMedCrossRefGoogle Scholar
  40. Zinkernagel RM, Hengartner H (1994) T-cell-mediated immunopathology versus direct cytolysis by virus: implication for HIV and AIDS. Immunol Today 15:262–268PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • J. F. Warner
    • 1
  • D. J. Jolly
    • 1
  • J. Merritt
    • 1
  1. 1.Chiron ViageneSan DiegoUSA

Personalised recommendations