Skip to main content

Anthrax Pathogenesis and Host Response

  • Chapter

Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY,volume 225)

Abstract

Anthrax has been both a scourge and a fundamental model for infectious disease studies for over a century. Death associated with systemic anthrax is mimicked in animals challenged with anthrax lethal toxin, a virulence factor believed to affect only macrophages. Animals depleted of macrophages become resistant to the toxin, while reintroduction of cultured macrophages into depleted animals restores sensitivity. These studies and others implicate an active role for the innate immune system in the demise of the anthrax victim. Many of the molecular factors and events in the cascade of lethal events during anthrax infections have now been identified. Other recent overviews of anthrax pathogenesis and toxins include those by Stephen (1986), Friedlander (1990), Leppla (1995), and Hanna and Collier (1997).

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   85.59
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anonymous (1994) Anthrax control and research, with special reference to national programme development in Africa: memorandum from a WHO meeting. Bull World Health Organ 72:13–22

    Google Scholar 

  • Arora N, Leppla SH (1993) Residues 1–254 of anthrax toxin lethal factor are sufficient to cause cellular uptake of fused polypeptides. J Biol Chem 268:3334–3341

    PubMed  CAS  Google Scholar 

  • Arora N, Leppla SH (1994) Fusions of anthrax toxin lethal factor with shiga toxin and diphtheria toxin enzymatic domains are toxic to mammalian cells. Infect Immun 62:4955–4961

    PubMed  CAS  Google Scholar 

  • Arora N, Klimpel KR, Singh Y, Leppla SH (1992) Fusions of anthrax toxin lethal factor to the ADP-ribosylation domain of Pseudomonas exotoxin A are potent cytotoxins which are translocated to the cytosol of mammalian cells. J Biol Chem 267:15542–15548

    PubMed  CAS  Google Scholar 

  • Bartkus JM, Leppla SH (1989) Transcriptional regulation of the protective antigen gene of Bacillus anthracis. Infect Immun 57:22295–22299

    Google Scholar 

  • Bell JH (1880) On anthrax and anthracaemia in wool sorters, heifers and sheep. Br Med J 2:656–657

    PubMed  CAS  Google Scholar 

  • Blaustein RO, Koehler TM, Collier RJ, Finkelstein A (1989) Anthrax toxin: channel-forming activity of protective antigen in planar phospholipid bilayers. Proc Natl Acad Sci USA 86:2209–2213

    PubMed  CAS  Google Scholar 

  • Blaustein RO, Lea EJ, Finkelstein A (1990) Voltage-dependent block of anthrax toxin channels in planar phospholipid bilayer membranes by symmetric tetraalkylammonium ions: single-channel analysis. J Gen Physiol 96:921–942

    PubMed  CAS  Google Scholar 

  • Bragg TS, Robertson DL (1989) Nucleotide sequence and analysis of the lethal factor gene (lef) from Bacillus anthracis. Gene 81:45–54

    PubMed  CAS  Google Scholar 

  • Cataldi A, Labruyere E, Mock M (1990) Construction and characterization of a protective antigen-deficient Bacillus anthracis strain. Mol Microbiol 4:1111–1117

    PubMed  CAS  Google Scholar 

  • Cataldi A, Fouet A, Mock M (1992) Regulation of pag gene expression in Bacillus anthracis: use of a paglacZ transcriptional fusion. FEMS Microbiol Lett 98:89–93

    CAS  Google Scholar 

  • Confer DL, Eaton JW (1982) Phagocyte impotence caused by the invasive bacterial adenylate cyclase. Science 217:948–950

    PubMed  CAS  Google Scholar 

  • Dai Z, Sirard JC, Mock M, Koehler TM (1995) The atxA gene product activates transcription of the anthrax toxin genes and is essential for virulence. Mol Microbiol 16:1171–1181

    PubMed  CAS  Google Scholar 

  • Dinarello CA (1988) Biology of interleukin 1. FASEB J 2:108–115

    PubMed  CAS  Google Scholar 

  • Dirckx JH (1981) Virgil on anthrax. Am J Dermatopathol 3:191–195

    PubMed  CAS  Google Scholar 

  • Escuyer V, Collier RJ (1991) Anthrax protective antigen interacts with a specific receptor on the surface of CHO-K1 cells. Infect Immun 59:3381–3386

    PubMed  CAS  Google Scholar 

  • Escuyer V, Duflot E, Sezer O, Danchin A, Mock M (1988) Structural homology between virulence-associated bacterial adenylate cyclases. Gene 71:293–298

    PubMed  CAS  Google Scholar 

  • Ezekowitz RAB (1992) Chronic granulomatous disease: an update and a paradigm for the use of interferon-gamma as adjunct immunotherapy in infectious diseases. Curr Topics Microbiol Immunol 181:283–292

    CAS  Google Scholar 

  • Fawthrop DJ, Boobis AR, Davies DS (1991) Mechanisms of cell death. Arch Toxicol 65:437–444

    PubMed  CAS  Google Scholar 

  • Friedlander AM (1986) Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J Biol Chem 261:7123–7126

    PubMed  CAS  Google Scholar 

  • Friedlander AM (1990) The anthrax toxins. In: Saelinger CB (ed) Trafficking of bacterial toxins. CRC Press, Boca Raton, pp 121–138

    Google Scholar 

  • Friedlander A, Bhatnagar R, Leppla SH, Johnson L, Singh Y (1993) Characterization of macrophage sensitivity and resistance to anthrax lethal toxin. Infect Immun 61:245–252

    PubMed  CAS  Google Scholar 

  • Gill DM (1978) Seven toxin peptides that cross cell membranes. In: Jeljaszewicz J, Wadstrom T (eds) Bacterial toxins and cell membranes. Academic, New York, pp 291–332

    Google Scholar 

  • Gladstone GP (1946) Immunity to anthrax. Protective antigen present in cell-free culture filtrates. Br J Exp Pathol 27:349–418

    Google Scholar 

  • Gordon VM, Leppla SH, Hewlett EL (1988)Inhibitors of receptor-mediated endocytosis block the entry of Bacillus anthracis adenylate cyclase toxin but not that of Bordetella pertussis adenylate cyclase toxin. Infect Immun 56:1066–1069

    PubMed  CAS  Google Scholar 

  • Gordon VM, Young WW, Lechler SM, Gray Mc, Leppla SH, Hewlett EL (1989) Adenylate cyclase toxins from Bacillus anthracis and Bordetella pertussis. Different processes for interaction with and entry into target cells. J Biol Chem 264:14792–14796

    PubMed  CAS  Google Scholar 

  • Hanna PC, Collier RJ (1997) Anthrax lethal toxin. In: Rapoulli R (ed) Bacterial toxins and their uses in cell biology (in press)

    Google Scholar 

  • Hanna PC, Kochi S, Collier RJ (1992) Biochemical and physiological changes induced by anthrax lethal toxin in J774 macrophage-like cells. Mol Biol Cell 3:1269–1277

    PubMed  CAS  Google Scholar 

  • Hanna PC, Acosta D, Collier R (1993) On the role of macrophages in anthrax. Proc Natl Acad Sci USA 90:10198–10201

    PubMed  CAS  Google Scholar 

  • Hanna PC, Kruskal B, Ezekowitz R, Bloom B, Collier RJ (1994) Role of macrophages oxidative burst in the action of anthrax lethal toxin. Mol Med 1:7–18

    PubMed  CAS  Google Scholar 

  • Hoover DL, Friedlander AM, Rogers LC, Yoon IK, Warren RL, Cross AS (1994) Anthrax edema toxin differentially regulates lipopolysaccharide-induced monocyte production of tumor necrosis factor alpha and interleukin-6 by increasing intracellular cyclic AMP. Infect Immun 62:4432–4439

    PubMed  CAS  Google Scholar 

  • Inocencio NM, Moehring JM, Moehring TJ (1993) A mutant CHO-K1 strain with resistance to Pseudomonas exotoxin A is unable to process the fusion glycoprotein of Newcastle disease virus. J Virol 67:595

    Google Scholar 

  • Kagan E, Hartman D (1984) Specific depletion of macrophages by silica treatment. Methods Enzymol 108:325–335

    PubMed  CAS  Google Scholar 

  • Kaspar RL, Robertson DL (1987) Purification and physical analysis of Bacillus anthracis plasmids pXOl and pXO2. Biochem Biophys Res Commun 149:362–368

    PubMed  CAS  Google Scholar 

  • Kass EH, Kendrick MI, Tsai YC, Parsonnet J (1987) Interaction of magnesium ion, oxygen tension and temperature in the production of toxic shock syndrome toxin-1 by Staphylococcus aureus. J Infect Dis 155:812–815

    PubMed  CAS  Google Scholar 

  • Klimpel KR, Molloy SS, Thomas G, Leppla SH (1992) Anthrax toxin protective antigen is activated by a cell surface protease with the sequence specificity and catalytic properties of furin. Proc Natl Acad Sci USA 89:10277–10281

    PubMed  CAS  Google Scholar 

  • Klimpel KR, Arora N, Leppla SH (1993) Anthrax toxin lethal factor has homology to the thermolysin-like proteases and displays proteolytic activity. Ann Meet Am Soc Microbiol 45:B–111

    Google Scholar 

  • Klimpel KR, Arora N, Leppla SH (1994) Anthrax toxin lethal factor contains a zinc metalloprotease consensus sequence which is required for lethal toxin activity. Mol Microbiol 13:1093–1100

    PubMed  CAS  Google Scholar 

  • Koch R (1877) The aetiology of anthrax based on the ontogeny of the anthrax bacillus. Beitr Biol Pflanz 2:277–282

    Google Scholar 

  • Kochi SK, Schiavo G, Mock M, Montecucco C (1994) Zinc content of the Bacillus anthracis lethal factor. FEMS Microbiol Lett 124:343–348

    PubMed  CAS  Google Scholar 

  • Koehler TM, Collier RJ (1991) Anthrax toxin protective antigen: low pH-induced hydrophobicity and channel formation in liposomes. Mol Microbiol 5:1501–1506

    PubMed  CAS  Google Scholar 

  • Koehler TM, Dai Z, Kaufman-Yarbray M (1994) Regulation of the Bacillus anthracis protective antigen gene: CO2 and a trans-acting element activate transcription from one of two prometers. J Bacteriol 176:586–595

    PubMed  CAS  Google Scholar 

  • Labruyere E, Mock M, Ladant D, Michelson S, Gilles AM, Laoide B, Baarzu O (1990) Characterization of ATP and calmodulin-binding properties of a truncated form of Bacillus anthracis adenylate cyclase. Biochemistry 29:4922–4928

    PubMed  CAS  Google Scholar 

  • LaForce FM (1978) Woolsorter’s disease in England. NY Acad Med 54:956

    CAS  Google Scholar 

  • Lenardo M J, Baltimore D (1989) NF-kB: a pleiotropic mediator of inducable and tissue-specific gene control. Cell 58:227–229

    PubMed  CAS  Google Scholar 

  • Leppla SH (1982) Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations in eukaryotic cells. Proc Natl Acad Sci USA 79:3162–3166

    PubMed  CAS  Google Scholar 

  • Leppla SH (1984) Bacillus anthracis calmodulin-dependent adenylate cyclase: chemical and enzymatic properties and interactions with eukaryotic cells. Adv Cyclic Nuleotide Protein Phosphorylat Res 17:189–198

    CAS  Google Scholar 

  • Leppla SH (1988) Production and purification of anthrax toxin. Methods Enzymol 165:103–116

    PubMed  CAS  Google Scholar 

  • Leppla SH (1991) The anthrax toxin complex. In: Alouf JE, Freer JH (eds) Sourcebook of bacterial protein toxins. Academic, London, pp 277–301

    Google Scholar 

  • Leppla SH (1995) Anthrax toxins. In: Moss J, Iglewski B, Vaughan M, Tu AT (eds) Bacterial toxins and virulence factors in disease. Dekker, New York, pp 543–572

    Google Scholar 

  • Leppla SH, Ivins BE, Ezzell JW (1985) Anthrax toxin. In: Leive L, Bonventre PF, Morello JA, Schlessinger S, Silver SD, Wu HC (eds) Microbiology. American Society of Microbiology, Washington DC, pp 63–66

    Google Scholar 

  • Lincoln RE, Fish DC (1970) Anthrax toxin. In: Montie TC, Kadis S, Ajl SJ (eds) Microbial toxins, vol III. Academic, New York, pp 361–414

    Google Scholar 

  • Little SF, Lowe JR (1991) Location of the receptor-binding region of protective antigen from Bacillus anthracis. Biochem Biophys Res Commun 180:531–537

    PubMed  CAS  Google Scholar 

  • Meselson M, Guillemin J, Hugh-Jones M, Langmuir A, Popova I, Shelokov A, Yampolskaya O (1994) The Sverdlovsk anthrax outbreak of 1979. Science 266:1202–1208

    PubMed  CAS  Google Scholar 

  • Metchnikoff E (1905) Immunity in infective diseases. Cambridge University Press, London

    Google Scholar 

  • Milne JC, Collier RJ (1993) pH-dependent permeabilization of the plasma membrane of mammalian cells by anthrax protective antigen. Mol Microbiol 10:647–653

    PubMed  CAS  Google Scholar 

  • Milne JC, Furlong D, Hanna PC, Wall JS, Collier RJ (1994) Anthrax protective antigen forms oligomers during intoxication of mammalian cells. J Biol Chem 269:20607

    PubMed  CAS  Google Scholar 

  • Milne JC, Blanke SR, Hanna PC, Collier RJ (1995) Protective antigen-binding domain of anthrax lethal factor mediates translocation of a heterologous protein fused to its amino- or carboxy-terminus. Mol Microbiol 15:661–666

    PubMed  CAS  Google Scholar 

  • Mock M, Labruyere E, Glaser P, Danchin A, Ullmann A (1988) Cloning and expression of the calmodulin-sensitive Bacillus anthracis adenylate cyclase in Escherichia coli. Gene 64:277–284

    PubMed  CAS  Google Scholar 

  • Molloy SS, Bresnahan PA, Leppla SH, Klimpel KR, Thomas G (1992) Humin furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen. J Biol Chem 267:16396–16402

    PubMed  CAS  Google Scholar 

  • Montecucco C, Schiavo G (1993) Tetanus and botulism neurotoxins: a new group of zinc proteases. Trend Biochem Sci 18:324–327

    PubMed  CAS  Google Scholar 

  • Munier H, Blanco FJ, Prêcheur B, Diesis E, Nieto JL, Craescu CT, Barzu O (1993) Characterization of a synthetic calmodulin-binding peptide derived from Bacillus anthracis adenylate cyclase. J Biol Chem 268:1695–1701

    PubMed  CAS  Google Scholar 

  • Nakayama S, Kretsinger RH (1994) Evolution of the EF-hand family of proteins. Annu Rev Biophys Biomol Struct 23:473–475

    PubMed  CAS  Google Scholar 

  • Novak JM, Stein MP, Little SF, Leppla SH, Friedlander AM (1992) Functional characterization of protease-treated Bacillus anthracis protective antigen. J Biol Chem 267:17186–17193

    PubMed  CAS  Google Scholar 

  • O’Brien J, Friedlander A, Dreier T, Ezzell J, Leppla S (1985) Effects of anthrax toxin components on human neutrophils. Infect Immun 47:306–310

    PubMed  Google Scholar 

  • Ogata M, Fryling CM, Pastan I, FitzGerald DJ (1992) Cell-mediated cleavage of Pseudomonas exotoxin between ARG279 and Gly280 generates the enzymatically active fragment which translocates to the cytosol. J Biol Chem 267:25396–25401

    PubMed  CAS  Google Scholar 

  • Pasteur L (1881) De l’atténuation des virus et de leur retour a la virulence. CR Acad Sci Agric Bulg 92:429–435

    Google Scholar 

  • Perelle S, Gibert M, Boquet P, Popoff MR (1993) Characterization of Clostridium perfringens iota-toxin genes and expression in Escherichia coli. Infect Immun 61:5147–5156

    PubMed  CAS  Google Scholar 

  • Petosa C, Liddington RC (1997) The anthrax toxin. In: Parker M W (ed) Protein toxin structure. Landes, Austin (in press)

    Google Scholar 

  • Petosa C, Collier RJ, Klimpel KR, Leppla SH, Liddington RC (1997) Crystal structure of the anthrax toxin protective antigen. Nature 385:833–838

    PubMed  CAS  Google Scholar 

  • Pezard C, Berche P, Mock M (1991) Contribution of individual toxin components to virulence of Bacillus anthracis. Infect Immun 59:3472–3477

    PubMed  CAS  Google Scholar 

  • Pezard C, Duflot E, Mock M (1993) Construction of Bacillus anthracis mutant strains producing a single toxin component. J Gen Microbiol 139:2459–2463

    PubMed  CAS  Google Scholar 

  • Quinn CP, Singh Y, Klimpel KR, Leppla SH (1991) Functional mapping of anthrax toxin lethal factor by in-frame insertion mutagenesis. J Biol Chem 266:20124–20130

    PubMed  CAS  Google Scholar 

  • Robertson DL (1988) Relationships between the calmodulin-dependent adenylate cyclases produced by Bacillus anthracis and Bordetella pertussis. Biochem Biophys Res Commun 157:1027–1032

    PubMed  CAS  Google Scholar 

  • Robertson DL, Leppla SH (1986) Molecular cloning and expression in Escherichia coli of the lethal factor gene of Bacillus anthracis. Gene 44:71–78

    PubMed  CAS  Google Scholar 

  • Robertson DL, Tippetts MT, Leppla SH (1988) Nucleotide sequence of the Bacillus anthracis edema factor gene (cya): a calmodulin-dependent adenylate cyclase. Gene 73:363–371

    PubMed  CAS  Google Scholar 

  • Robertson DL, Bragg TS, Simpson S, Kaspar R, Xie W, Tippetts MT (1990) Mapping and characterization of the of Bacillus anthracis plasmids pXOl and pX02. Salisbury Med Bull 68:55–58

    Google Scholar 

  • Schiavo G, Benfenati F, Poulain B, Rossetto O, de Laureto PP, Dasgupta BR, Montecucco C (1992) Tetanus and botilinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359:832–835

    PubMed  CAS  Google Scholar 

  • Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kB transcription factor and HIV-1. EM BO J 10:2247–2258

    CAS  Google Scholar 

  • Shimamura T, Watanabe S, Sasaki S (1985) Enhancement of enterotoxin production by carbon dioxide in Vibrio cholerae. Infect Immun 49:455–456

    PubMed  CAS  Google Scholar 

  • Singh Y, Chaudhary VK, Leppla SH (1989) A deleted varient of Bacillus anthracis protective antigen is non-toxic and blocks anthrax toxin in vivo. J Biol Chem 264:19103–19107

    PubMed  CAS  Google Scholar 

  • Singh Y, Klimpel KR, Quinn CP, Chaudhary VK, Leppla SH (1991) The carboxyl-terminal end of protective antigen is required for receptor-binding and anthrax toxin activity. J Biol Chem 266:15493–15497

    PubMed  CAS  Google Scholar 

  • Singh Y, Klimpel KR, Arora N, Sharma M, Leppla SH (1994) The chymotrypsin-sensitive site FFD315, in anthrax toxin protective antigen is required for translocation of lethal factor. J Biol Chem 269:29039–29046

    PubMed  CAS  Google Scholar 

  • Sirarad JC, Mock M, Fouet A (1994) The three Bacillus anthracis toxin genes are coordinately regulated by bicarbonate and temperature. J Bacteriol 176:5188–5192

    Google Scholar 

  • Steiner DF, Smeekens SP, Ohagi S, Chan SJ (1992) The new enzymology of precursor processing endoproteases. J Biol Chem 267:23435–23438

    PubMed  CAS  Google Scholar 

  • Stephen J (1986) Anthrax toxin. In: Dorner F, Drews J (eds) Pharmacology of bacterial toxins. Pergamon, Oxford, pp 381–395

    Google Scholar 

  • Südhof TC, De Camilli P, Niemann H, Jahn R (1993) Membrane fusion machinery: insights from synaptic proteins. Cell 75:1–4

    PubMed  Google Scholar 

  • Turnbull PC (1992) Anthrax vaccines: past, present and future. Vaccine 9:533—539

    Google Scholar 

  • Uchida I, Sekizaki T, Hashimoto K, Terakado N (1985) Association of the encapsulation of Bacillus anthracis with a 60-megadalton plasmid. J Gen Microbiol 131:363–3367

    PubMed  CAS  Google Scholar 

  • Uchida I, Hashimoto K, Makino S, Sasakawa C, Yoshikawa M, Teradado N (1987) Restriction map of a capsule plasmid of Bacillus anthracis. Plasmid 18:178–181

    PubMed  CAS  Google Scholar 

  • Uchida I, Hornung JM, Thorne CB, Klimpel KR, Leppla SH (1993) Cloning and characterization of a gene whose product is a transactivator of anthrax toxin synthesis. J Bacteriol 175:5329–5338

    PubMed  CAS  Google Scholar 

  • Vallée BL, Auld DS (1990) Zinc coordination, function, and structures of zinc enzymes and other proteins. Biochemistry 29:5647–5659

    PubMed  Google Scholar 

  • van de Ven WJ, Voorberg J, Fontign R, Pannekoek H, van den Ouweland AM, van Duijnhoven HL, Roebroek AJ, and Siezen RJ (1990) Furin is a subtilisn-like proprotein-processing enzyme in higher eukaryotes. Mol Biol Rep 14:265–275

    PubMed  Google Scholar 

  • Vietri NJ, Marrero R,. Hoover TA, Welkos SL (1995) Indentification and characterization of a transactivator involved in the regulation of encapsulation by Bacillus anthracis. Gene 152:1–9

    PubMed  CAS  Google Scholar 

  • Vodkin MH, Leppla SH (1983) Cloning of the protective antigen gene of Bacillus anthracis. Cell 34:693–697

    PubMed  CAS  Google Scholar 

  • Wade B, Wright G, Hewlett E, Leppla S, Mandell G (1985) Anthrax toxin components stimulate Chemotaxis of human polymorphonuclear neutrophils. Proc Soc Exp Biol Med 179:159–162

    PubMed  CAS  Google Scholar 

  • Walker B, Braha O, Cheley S, Bayley H (1995) An intermediate in the assembly of a pore-forming protein trapped with a genetically-engineered switch. Chem Biol 2:99–105

    PubMed  CAS  Google Scholar 

  • Warren G (1996) Novel pesticidal proteins and strains. World intellectual property organization. Patent application WO 96/10083

    Google Scholar 

  • Welkos SL (1991) Plasmid-associated virulence factors of non-toxigenic (pXOl-) Bacillus anthracis. Microb Pathogen 10:183–198

    CAS  Google Scholar 

  • Welkos SL, Keener TJ, Gibbs PH (1986) Differences in susceptibility of inbred mice to Bacillus anthracis. Infect Immun 51:795–800

    PubMed  CAS  Google Scholar 

  • Welkos S, Lowe J, Eden-McCutchan F, Vodkin M, Leppla S, Schmidt J (1988) Sequence and analysis of the DNA excoding protective antigen of Bacillus anthracis. Gene 69:287–300

    PubMed  CAS  Google Scholar 

  • Williams DP, Wen Z, Watson RS, Boyd J, Strom TB, Murphy JR (1990) Cellular processing of the interleukin-2 fusion toxin DAB486-IL-2 and efficient delivery of diphtheria fragment A to the cytosol of target cells requires Arg 194. J Biol Chem 265:20673–20677

    PubMed  CAS  Google Scholar 

  • Wright GG, Mandell GL (1986) Anthrax toxin blocks priming of neutrophils by lipopolysaccharide and by muramyl dipeptide. J Exp Med 164:1700–1709

    PubMed  CAS  Google Scholar 

  • Wright GG, Read PW, Mandell GL (1988) Lipopolysaccharide releases a priming substance from platelets that augments the oxidative response of polymorphonuclear neutrophils to chemotactic peptide. J Infect Dis 157:690–696

    PubMed  CAS  Google Scholar 

  • Xia Z, Storm DR (1990) A-type ATP-binding consensus sequences are critical for the catalytic activity of the calmodulin-sensitive adenyly cyclase from Bacillus anthracis. J Biol Chem 265:6517–6520

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hanna, P. (1998). Anthrax Pathogenesis and Host Response. In: Vogt, P.K., Mahan, M.J. (eds) Bacterial Infection: Close Encounters at the Host Pathogen Interface. Current Topics in Microbiology and Immunology, vol 225. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80451-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80451-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80453-3

  • Online ISBN: 978-3-642-80451-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics