Skip to main content

Phloem. Structure Related to Function

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 59))

Abstract

The key tissue for the integration of growth processes within a plant is the phloem. Its highly specialised sieve elements (SEs) form an intimate symplasmic domain for the long-distance transport of assimilates from green source organs to the assimilate consuming or storing sink organs. When functional, the SEs have a greatly reduced cytoplasm and are interconnected by wide sieve pores originating in plasmodesmata, thus forming a low-resistance pathway for translocates. In contrast to the xylem, the driving force for the long distance transport is produced endogenously within the phloem tissue and the conducting cells are vital when functioning, so that changes in assimilate demand can rapidly and flexibly be met.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anderson R, Cronshaw J (1969) The effects of pressure release on the sieve plate pores of Nicotiana. Am J Bot 71: 1060–1066

    Google Scholar 

  • Ap Rees T (1994) Virtue on both sides. Curr Biol 4: 557–559

    Article  CAS  Google Scholar 

  • Beebe DU, Evert RF (1992) Photoassimilate pathway(s) and phloem loading in the leaf of Moricandia arvensis (L.) DC. (Brassicaceae). Int J Plant Sci 153: 61–77

    Article  Google Scholar 

  • Beebe DU, Turgeon R (1992) Localization of galactinol, raffinose, and stachyose synthesis in Cucurbita pepo leaves. Planta 188: 354–361

    Article  CAS  Google Scholar 

  • Behnke H-D (1981) Siebelelement-Plastiden, Phloem-Protein und Evolution der Blutenpflanzen. II. Monokotyledonen. Ber Dtsch Bot Ges 94: 647–662

    Google Scholar 

  • Behnke H-D (1983) Cytology and morphogenesis of higher plant cells - phloem. Prog Bot 45: 18–35

    Google Scholar 

  • Behnke H-D (1986) Sieve element characters and the systematic position of Austrobaileya (Austrobaileyaceae) - with comments to the distinction and definition of sieve cells and sieve-tube members. Plant Syst Evol 152: 101–12

    Article  Google Scholar 

  • Behnke H-D (1989) Structure of the phloem. In: Baker DA, Milburn JA (eds) Transport of photoassimilates. Longman, Harlow/UK, pp 79–137

    Google Scholar 

  • Behnke H-D (1990a) Siebelemente - Kernlose Spezialisten fur den Stofftransport in Pflanzen. Naturwissenschaften 77: 1–11

    Article  CAS  Google Scholar 

  • Behnke H-D (1990b) Cycads and genotophytes. In: Behnke H-D, Sjolung RD (eds) Sieve elements - comparative structure, induction and development. Springer, Berlin Heidelberg New York, pp 89–101

    Google Scholar 

  • Behnke H-D (1990c) Sieve elements in internodal and nodal anastomoses of the monocotyledon liana Dioscorea. In: Behnke H-D, Sjolund RD (eds) Sieve elements - comparative structure, induction and development. Springer, Berlin Heidelberg New York, pp 161–178

    Google Scholar 

  • Behnke H-D (1991a) Distribution and evolution of forms and types of sieve-element plastids in the dicotyledons. Aliso 13: 167–182

    Google Scholar 

  • Behnke H-D (1991b) Nondispersive protein bodies in sieve elements: a survey and review of their origin, distribution and taxonomic significance. IAWA Bull (NS) 12: 143–175

    Google Scholar 

  • Behnke H-D (1994) Sieve-element plastids, nuclear crystals and phloem proteins in the Zingiberales. Bot Acta 107: 3–11

    CAS  Google Scholar 

  • Behnke H-D (1995a) Sieve element characters of the Proteaceae and Elaeagnaceae: nuclear crystals, phloem proteins and sieve element plastids. Bot Acta 108: 514–524

    CAS  Google Scholar 

  • Behnke H-D (1995b) Sieve element plastids, phloem proteins, and the evolution of the Ranunculanae. Plant Syst Evol 9 (Suppl) 25–37

    Google Scholar 

  • Behnke H-D (1996) Endoplasmic reticulum derived decorated tubules in the sieve elements of Nymphaea. Protoplasma 193: 213–221

    Article  Google Scholar 

  • Behnke H-D, Richter K (1990) Primary phloem development in the shoot apex of Rhizophora mangle L. (Rhizophoraceae). Bot Acta 103: 296–304

    Google Scholar 

  • Behnke H-D, Schulz A (1983) The development of specific sieve-element plastids in wound phloem of Coleus blumei (S-type) and Pisum sativum (P-type), regenerated from amyloplast-containing parenchyma cells. Protoplasma 114: 125–132

    Article  Google Scholar 

  • Behnke H-D, Sjolund RD (eds) (1990) Sieve elements - comparative structure, induction and development. Springer, Berlin Heidelberg New York, 305 pp

    Google Scholar 

  • Behnke H-D, Kiritsis U, Patrick SJ, Keneally KF (1996) Form-Pfs plastids, stem anatomy and systematic affinities of Stylobasium Desf. (Stylobasiaceae): a contribution to the knowledge of sieve element plastids in the Rutales and Sapindales. Bot Acta 109: 346–359

    Google Scholar 

  • Bostwick DE, Thompson GA (1993) Nucleotide sequence of a pumpkin phloem lectin cDNA. Plant Physiol 102: 693–694

    Article  PubMed  CAS  Google Scholar 

  • Bostwick DE, Dannenhoffer JM, Skaggs MI, Lister RM, Larkins BA, Thompson GA (1992) Pumpkin phloem lectin genes are specifically expressed in companion cells. Plant Cell 4: 1539–1548

    Article  PubMed  CAS  Google Scholar 

  • Bostwick DE, Skaggs MI, Thompson GA (1994) Organization and characterization of Cucurbita phloem lectin genes. Plant Mol Biol 26: 887–897

    Article  PubMed  CAS  Google Scholar 

  • Botha CEJ (1992) Plasmodesmatal distribution, structure and frequency in relation to assimilation in C3 and C4 grasses in southern Africa. Planta 187: 348–358

    CAS  Google Scholar 

  • Botha CEJ, Van Bel AJE (1992) Quantification of symplastic continuity as visualised by plasmodesmograms - diagnostic value for phloem-loading pathways. Planta 187: 359–366

    Google Scholar 

  • Botha CEJ, Hartley BJ, Cross RHM (1993) The ultrastructure and computer-enhanced digital image analysis of plasmodesmata at the Kranz mesophyll-bundle sheath interface of Themeda triandra var. imberbis (Retz) A. Camus in conventionally-fixed leaf blades. Ann Bot 72:255–261

    Google Scholar 

  • Bouché-Pillon S, Fleurat-Lessard P, Fromont JC, Serrano R, Bonnemain JL (1994) Immunolocalizion of the plasma membrane H+-ATPase in minor veins of Vicia faba in relation to phloem loading. Plant Physiol 105: 691–697

    Google Scholar 

  • Bret-Harte MS, Silk WK (1994) Non-vascular, symplasmic diffusion of sucrose cannot satisfy the carbon demands of growth in the primary root tip of Zea mays L. Plant Physiol 105: 19–33

    PubMed  CAS  Google Scholar 

  • Carde J-P (1973) Le tissu de transfert (= cellules de Strasburger) dans les aiguilles du pin maritime (Pinus pinaster Ait.). I. Étude histologique et infrastructurale du tissu adulte. J Microsc 17: 65–88

    Google Scholar 

  • Chino M, Hahashi H, Nakamura S, Oshima T, Turner H, Sabnis D, Borkovec V, Baker D, Girousse G, Bonnemain JL, Delrot S (1991) Phloem sap composition. In: Bonnemain JL, Delrot S, Lucas WJ, Dainty J (eds) Recent advances in phloem transport and assimilate compartmentation. Quest Editions, Nantes, pp 64–73

    Google Scholar 

  • Cleland RE, Fujiwara T, Lucas WJ (1994) Plasmodesmal-mediated cell-to-cell transport in wheat roots is modulated by anaerobic stress. Protoplasma 178: 81–85

    Article  PubMed  CAS  Google Scholar 

  • Cresson RA, Evert RF (1993) Structure of the primary shoot of Ephedra viridis Cov. Int J Plant Sci 154: 264–279

    Article  Google Scholar 

  • Cresson RA, Evert RF (1994) Development and ultrastructure of the primary phloem in the shoot of Ephedra viridis (Ephedraceae). Am J Bot 81: 868–877

    Article  Google Scholar 

  • Cronshaw J, Sabnis DD (1990) Phloem proteins. In: Behnke H-D, Sjolund RD (eds) Sieve elements - comparative structure, induction and development. Springer, Berlin Heidelberg New York, pp 257–283

    Google Scholar 

  • Currier HB, Webster DH (1964) Callose formation and subsequent disappearance: studies in ultrasound stimulation. Plant Physiol 39: 843–847

    Article  PubMed  CAS  Google Scholar 

  • Dannenhoffer JM, Evert RF (1994) Development of the vascular system in the leaf of barley (Hordeum vulgare L.). Int J Plant Sci 155: 143–157

    Article  Google Scholar 

  • Dannenhoffer JM, Ebert W Jr, Evert RF (1990) Leaf vasculature in barley, Hordeum vulgare (Poaceae). Am J Bot 77: 636–652

    Article  Google Scholar 

  • Dannenhoffer JM, Schulz A, Bostwick DE, Skaggs MI, Thompson GA (1997) Expression of phloem lectin is developmentally linked to vascular differentiation in cucurbits. Planta 201: 405–414

    Article  CAS  Google Scholar 

  • Delmer DP, Volokita M, Solomon M, Fritz U, Delphendahl W, Herth W (1993) A monoclonal antibody recognizes a 65 kDa higher plant membrane polypeptide which undergoes cation-dependent association with callose synthase in vitro and co-localizes with sites of high callose deposition in vivo. Protoplasma 176: 33–42

    Article  CAS  Google Scholar 

  • Delrot S (1989) Loading of photoassimilates. In: Baker DA, Milburn JA (eds) Transport of photoassimilates. Longman, Harlow/UK, pp 167–205

    Google Scholar 

  • DeWitt ND, Sussman MR (1995) Immunocytological localization of an epitope tagged plasma membrane proton pump (H+ ATPase) in phloem companion cells. Plant Cell 7: 2053–2067

    Google Scholar 

  • Dick PS, Ap Rees T (1975) The pathway of sugar transport in roots of Pisum sativum. J Exp Bot 26: 305–314

    Article  CAS  Google Scholar 

  • Ding B, Parthasarathy MV, Niklas K, Turgeon R (1988) A morphometric analysis of the phloem-unloading pathway in developing tobacco leaves. Planta 176: 307–318

    Article  Google Scholar 

  • Ding B, Turgeon R, Parthasarathy MV (1992) Substructure of freeze-substituted plasmodesmata. Protoplasma 169: 28–41

    Article  Google Scholar 

  • Ding B, Haudenshield JS, Willmitzer L, Lucas WJ (1993) Correlation between arrested secondary plasmodesmal development and onset of accelerated leaf senescence in yeast acid invertase transgenic tobacco plants. Plant J 4: 179–189

    Article  PubMed  CAS  Google Scholar 

  • Ding B, Kwon MO, Warnberg L (1996) Evidence that actin filaments are involved in controlling the permeability of plasmodesmata in tobacco mesophyll. Plant J 10: 157–164

    Article  Google Scholar 

  • Dorhout R, Kollöffel C (1992) Determining apoplasmic pH differences in pea roots by use of the fluorescent dye fluorescein. J Exp Bot 43: 479–486

    Article  CAS  Google Scholar 

  • Dörr I (1990) Sieve elements in haustoria of parasitic angiosperms. In: Behnke H-D, Sjolund RD (eds) Sieve elements - comparative structure, induction and develop¬ment, Springer, Berlin Heidelberg New York, pp 239–256

    Google Scholar 

  • Dörr I, Kollmann R (1995) Symplasmic sieve element continuity between Orobanche and its host. Bot Acta 108: 47–55

    Google Scholar 

  • Ehlers K, Kollmann R (1996) Regulation of the symplasmic contact between physiologically different cells. III. Int Worksh on Basic and applied research in plasmodesmal biology, Israel, pp 77–81

    Google Scholar 

  • Eleftheriou EP (1990) Monocotyledons. In: Behnke H-D, Sjolund RD (eds) Sieve elements - comparative structure, induction and development. Springer, Berlin Heidelberg New York, pp 139–159

    Google Scholar 

  • Eleftheriou EP (1993a) Differentiation of abnormal sieve elements in roots of wheat (Triticum aestivum L.) affected by colchicine. New Phytol 125: 813–827

    Article  CAS  Google Scholar 

  • Eleftheriou EP (1993b) Prospective companion cells differentiate into abnormal sieve elements in colchcine-treated roots of Triticum aestivum. Protoplasma 176: 151–164

    Article  Google Scholar 

  • Eleftheriou EP (1994) Abnormal structure of protophloem sieve-element wall in colchicine-treated roots of Triticum aestivum L. Planta 193: 266–274

    Article  CAS  Google Scholar 

  • Eleftheriou EP (1996) Developmental features of protophloem sieve elements in roots of wheat (Triticum aestivum L.). Protoplasma 193: 204–212

    Article  Google Scholar 

  • Eleftheriou EP, Tsekos I (1982) Development of protophloem in roots of Aegilops comosa var. thessalica. II. Sieve-element differentiation. Protoplasma 113: 221–233

    Article  Google Scholar 

  • Engleman EM (1965) Sieve element of Impatiens sultanii. 2. Developmental aspects. Ann Bot 29: 103–118

    Google Scholar 

  • Esau K (1969) The phloem. In: Zimmermann W, Ozenda P, Wulff HD (eds) Encyclopedia of plant anatomy, vol. 5 /2. Borntraeger, Berlin

    Google Scholar 

  • Esau K, Cheadle VI (1959) Size of pores and their contents in sieve elements of dicotyledons. Proc Natl Acad Sci USA 45: 156–162

    Article  PubMed  CAS  Google Scholar 

  • Esau K, Gill RH (1973) Correlations in differentiation of protophloem sieve elements of Allium cepa root. J Ultrastruct Res 44: 310–328

    Article  PubMed  CAS  Google Scholar 

  • Esau K, Thorsch J (1985) Sieve plate pores and plasmodesmata, the communication channels of the symplast: ultrastructural aspects and developmental relations. Am J Bot 72: 1641–1653

    Article  Google Scholar 

  • Eschrich W, Fromm J (1994) Evidence for two pathways of phloem loading. Physiol Planta 90: 699–707

    Article  Google Scholar 

  • Evert RF (1990a) Seedless vascular plants. In: Behnke H-D, Sjolund RD (eds) Sieve elements - comparative structure, inducation and development. Springer, Berlin Heidelberg New York, pp 35–62

    Google Scholar 

  • Evert RF (1990b) Dicotyledons. In: Behnke H-D, Sjolund RD (eds) Sieve elements - comparative structure, induction and development. Springer, Berlin Heidelberg New York, pp 103–137

    Google Scholar 

  • Evert RF, Mierzwa RJ (1989) The cell wall - plasmalemma interface in sieve tubes of barley. Planta 177: 24–34

    Article  Google Scholar 

  • Evert RF, Russin WA (1993) Structurally phloem unloading in the maize leaf cannot be symplastic. Am J Bot 80: 1310–1317

    Article  Google Scholar 

  • Evert RF, Russin WA, Bosabalidis AM (1996a) Anatomical and ultrastructural changes associated with sink to source transition in developing maize leaves. Int J Plant Sci 157: 247–261

    Article  Google Scholar 

  • Evert RF, Russin WA, Botha CEJ (1996b) Distribution and frequency of plasmodesmata in relation to photoassimilate pathways and phloem loading in the barley leaf. Planta 198: 572–579

    Article  CAS  Google Scholar 

  • Farrar JF (1985) Fluxes of carbon in roots of barley plants. New Phytol 99: 57–69

    Article  CAS  Google Scholar 

  • Fensom DS, Williams EJ, Aikman DP, Dale JE, Scobie J, Ledingham KWD, Drinkwater A, Moorby J (1977) Translocation of 11-C from leaves of Helianthus: preliminary results. Can J Bot 55: 1787–1793

    Article  CAS  Google Scholar 

  • Fieuw S, Willenbrink J (1990) Sugar transport and sugar-metabolizing enzymes in sugar beet storage roots (Beta vulgaris spp. altissima). J Plant Physiol 137: 216–223

    CAS  Google Scholar 

  • Fisher DB, Oparka KJ (1996) Post phloem transport: principles and problems. J Exp Bot 47 Spec Issue:1141–1154

    Google Scholar 

  • Fisher DB, Wang N (1995) Sucrose concentration gradients along the post-phloem transport pathway in the maternal tissues of developing wheat grains. Plant Physiol 109: 587–592

    PubMed  CAS  Google Scholar 

  • Fisher DB, Wu Y, Ku MSB (1992) Turnover of soluble proteins in the wheat sieve tube. Plant Physiol 100: 1433–1441

    Article  PubMed  CAS  Google Scholar 

  • Fisher DG (1991) Plasmodesmatal frequency and other structural aspects of assimilate collection and phloem loading in leaves of Sonchus oleraceus (Asteraceae), a species with minor vein transfer cells. Am J Bot 78: 1549–1559

    Article  Google Scholar 

  • Flora LL, Madore MA (1996) Significance of minor-vein anatomy to carbohydrate transport. Planta 198: 171–178

    Article  CAS  Google Scholar 

  • Fritz E, Evert RF, Heyser W (1983) Microautoradiographic studies of phloem loading and transport in the leaf of Zea mays L. Planta 159: 193–206

    Article  Google Scholar 

  • Fritz E, Evert RF, Nasse H (1989) Loading and transport of assimilates in different maize leaf bundles. Digital image analysis of 14C-microautoradiographs. Planta 178: 1–9

    Article  Google Scholar 

  • Gahrtz M, Stolz J, Sauer N (1994) A phloem-specific sucrose-H+ symporter from Plantago major L. supports the model of apoplasmic phloem loading. Plant J 6: 697–706

    Article  PubMed  CAS  Google Scholar 

  • Galway ME, McCully ME (1987) The time course of the induction of callose in wounded pea roots. Protoplasma 139: 77–91

    Article  Google Scholar 

  • Gamalei Y (1989) Structure and function of leaf minor veins in trees and herbs. A taxonomic review. Trees 3: 96–110

    Article  Google Scholar 

  • Gamalei YV, Van Bel AJE, PakhomovaMV, Sjutkina AV (1994) Effects of temperature on the conformation of the endoplasmic reticulum and on starch accumulation in leaves with the symplasmic minor-vein configuration. Planta 194: 443–453

    Google Scholar 

  • Geigenberger P, Stitt M (1991) A “futile” cycle of sucrose synthesis and degradation is involved in regulating partitioning between sucrose, starch and respiration in cotyledons of germinating Ricinus communis seedlings when phloem transport is inhibited. Planta 185: 81–90

    CAS  Google Scholar 

  • Getz HP, Klein M (1995a) Characteristics of sucrose transport and sucrose-induced H+ transport on the tonoplast of red beet (Beta vulgaris L.) storage tissue. Plant Physiol 107: 459–467

    PubMed  CAS  Google Scholar 

  • Getz HP, Klein M (1995b) The vacuolar ATPase of red beet storage tissue: electron microscopic demonstration of the “head-and-stalk” structure. Bot Acta 108: 14–23

    CAS  Google Scholar 

  • Glockmann C, Kollmann R (1996) Structure and development of cell connections in the phloem of Metasequoia glyptostroboides needles. I. Ultrastructural aspects of modified primary plasmodesmata in Strasburger cells. Protoplasma 193: 191–203

    Article  Google Scholar 

  • Golecki B, Kollmann R (1996) Can phloem proteins move between graft partners? J Exp Bot 47 Spec Issue:1326

    Google Scholar 

  • Gottschalk M, Dolgemer E, Erber A, Szederkenyi J, Komor E, Horstmann C, Schobert C (1996) Das Phloemexsudat aus Keimlingen von Ricinus communis L. enthält eine Peptidyl-prolyl cis-trans Isomerase. Botanikertagung Düsseldorf, Abstr, p 324

    Google Scholar 

  • Grimes HD, Overvoorde PJ, Ripp K, Franceschi VR, Hitz WD (1992) A 62kDa sucrose binding protein is expressed and localized in tissues actively engaged in sucrose transport. Plant Cell 4: 1561–1574

    Article  PubMed  CAS  Google Scholar 

  • Grimm E, Bernhardt G, Rothe K, Jacob F (1990) Mechanism of sucrose retrieval along the phloem path - a kinetic approach. Planta 182: 480–485

    Article  CAS  Google Scholar 

  • Grimm E, Jahnke S, Rothe K (1997) Photoassimilate translocation in the petiole of Cyclamen and Primula is independent of lateral retrieval. J Exp Bot 48: 1087–1094

    Article  CAS  Google Scholar 

  • Grusak MA, Minchin PEH (1989) Cold-inhibited phloem translocation in sugar beet. IV. Analysis of the cooling-induced repartitioning hypothesis. J Exp Bot 40: 215–223

    Article  Google Scholar 

  • Gunning BES, Pate JS, Minchin FR, Marks I (1974) Quantitative aspects of transfer cell structure in relation to vein loading in leaves and solute transport in legume nodules. Symp Soc Exp Biol 28: 87–124

    PubMed  CAS  Google Scholar 

  • Hardham AR, McCully ME (1982) Reprogramming of cells following wounding in pea (Pisum sativum L.) roots. II. The effects of caffeine and colchicine on the development of new vascular elements. Protoplasma 112: 152–166

    Article  CAS  Google Scholar 

  • Haritatos E, Keller F, Turgeon R (1996) Raffinose oligosaccharide concentrations measured in individual cell and tissue types in Cucumis melo L. leaves: implications for phloem loading. Planta 198: 614–622

    Article  CAS  Google Scholar 

  • Holthaus U, Schmitz K (1991) Distribution and immunolocalization of stachyose synthase in Cucumis melo L. Planta 185: 479–486

    Article  CAS  Google Scholar 

  • Hébant C (1975) Lack of incorporation of tritiated uridine by nuclei of mature sieve elements in Metasequoia glyptostroboides and Sequoiadendron giganteum. Planta 126: 161–163

    Article  Google Scholar 

  • Iqbal M (1995) Ultrastructural differentiation of sieve elements. In: Iqbal M (ed) The cambial derivates. Encyclopedia of plant anatomy, vol 9/4. Borntraeger, Berlin, pp 241–270

    Google Scholar 

  • Ishiwatari Y, Honda C, Kawashima I, Nakamura S-I, Hirano H, Mori S, Fujiwara T, Hayashi H, Chino M (1995) Thioredoxin h is one of the major proteins in rice phloem sap. Planta 195: 456–463

    Article  PubMed  CAS  Google Scholar 

  • Kauss H (1987) Callose-Synthese. Regulation durch induzierten Ca2+-Einstrom in Pflanzenzellen. Naturwissenschaften 74: 275–281

    Article  CAS  Google Scholar 

  • Kempers R, Van Bel AJE (1997) Symplasmic connections between sieve element and companion cell in the stem phloem of Vicia faba have a molecular exclusion limit of at least 10 kDa. Planta 201: 195–201

    Article  CAS  Google Scholar 

  • Kempers R, Prior DAM, Van Bel AJE, Oparka KJ (1993) Plasmodesmata between sieve element and companion cell of extrafascicular stem phloem of Cucurbita maxima permit passage of 3-kDa fluorescent probes. Plant J 4: 567–575

    Article  Google Scholar 

  • King RW, Zeevaart JAD (1974) Enhancement of phloem exudation from cut petioles by chelating agents. Plant Physiol 53: 96–103

    Article  PubMed  CAS  Google Scholar 

  • Kleinig H, Dörr I; Weber C, Kollmann R (1971) Filamentous proteins from plant sieve tubes. Nature (New Biol) 229: 152–153

    Article  CAS  Google Scholar 

  • Köckenberger W, Pope JM, Xia Y, Jeffrey KR, Komor E, Callaghan PT (1997) A noninvasive measurement of phloem and xylem water flow in castor bean seedlings by nuclear magnetic resonance microimaging. Planta 201: 53–63

    Article  Google Scholar 

  • Kollmann R (1980) Fine structural and biochemical characterization of phloem proteins. Can J Bot 58: 802–806

    Article  CAS  Google Scholar 

  • Kollmann R, Glockmann C (1990) Sieve elements of graft unions. In: Behnke H-D, Sjolund RD (eds) Sieve elements - comparative structure, induction and development. Springer, Berlin Heidelberg New York, pp 219–237

    Google Scholar 

  • Kollmann R, Schulz A (1993) Phloem regeneration. Prog Bot 54: 63–78

    Google Scholar 

  • Kollmann R, Schumacher W (1964) Über die Feinstruktur des Phloems von Metasequoia glyptostroboides und seine jahreszeitlichen Veränderungen. V. Die Differenzierung der Siebzellen im Verlaufe einer Vegetationsperiode. Planta 63: 155–190

    Article  Google Scholar 

  • Kollmann R, Dörr I, Kleinig H (1970) Protein filaments - structural components of the phloem exudate. I. Observations with Cucurbita and Nicotiana. Planta 95: 86–94

    Article  CAS  Google Scholar 

  • Komor E, Orlich G, Weig A, Köckenberger W (1996) Phloem loading: not metaphysical, only complex: towards a unified model of phloem loading. J Exp Bot 47 Spec Issued 155–1164

    Google Scholar 

  • Kühn C, Quick WP, Schulz A, Riesmeier JW, Sonnewald U, Frommer WB (1996) Companion cell-specific inhibition of the potato sucrose transporter SUT1. Plant Cell Environ 19: 1115–1123

    Article  Google Scholar 

  • Kühn C, Franceschi VR, Schulz A, Lemoine R, Frommer WB (1997) Macromolecular trafficking indicated by localization and turnover of sucrose transporters in enucleate sieve elements. Science 275: 1298–1300

    Article  PubMed  Google Scholar 

  • Lackney VK (1991) Ultrastructure and formation of phloem in Cucurbita pepo callus. J Struct Biol 196: 135–144

    Article  Google Scholar 

  • Lackney VK, Sjolund RD (1991) Solute concentrations of the phloem and parenchyma cells present in squash callus. Plant Cell Environ 14: 213–219

    Article  Google Scholar 

  • Lang A, Minchin PEH (1986) Phylogenetic distribution and mechanism of translocation inhibition by chilling. J Exp Bot 37: 389–398

    Article  Google Scholar 

  • Leisner SM, Turgeon R (1993) Movement of virus and photoassimilate in the phloem–a comparative analysis. Bioessays 15: 741–748

    Article  PubMed  CAS  Google Scholar 

  • Lübeck J, Heins L, Soll J (1997) Protein import into chloroplasts. Physiol Plant 100: 53–64

    Article  Google Scholar 

  • Lucas WJ (1995) Plasmodesmata: intercellular channels for macromelecula transport in plants. Curr Biol 7: 673–680

    CAS  Google Scholar 

  • Lucas WJ, Ding B, van der Schoot C (1993) Plasmodesmata and the supracellular nature of plants. Tansley review no 58. New Phytol 125: 435–476

    Article  Google Scholar 

  • Lucas WJ, Bouché-Pillon S, Jackson DP, Nguyen L, Baker L, Ding B, Hake S (1995) Selective trafficking of KNOTTED 1 homeodomain protein and its mRNA through plasmodesmata. Science 270: 1980–1983

    Google Scholar 

  • Lucas WJ, Balachandran S, Park J, Wolf S (1996) Plasmodesmal companion cell mesophyll communication in the control over carbon metabolism and phloem transport: insights gained from viral movement proteins. J Exp Bot 47 Spec Issue:1119–1128

    Google Scholar 

  • Matzke MA, Matzke AJM (1986) Visualization of mitochondria and nuclei in living plant cells by the use of a potential-sensitive fluorescent dye. Plant Cell Environ 9: 73–77

    Google Scholar 

  • McCauley MM, Evert RF (1988a) Morphology and vasculatures of the leaf of potato (Solanum tuberosum). Am J Bot 75: 377–390

    Article  Google Scholar 

  • McCauley MM, Evert RF (1988b) The anatomy of the leaf of potato, Solanum tuberosum L. “Russet Burbank”. Bot Gaz 149: 179–195

    Article  Google Scholar 

  • McCauley MM, Evert RF (1989) Minor veins of the potato (Solanum tuberosum L.) leaf: ultrastructure and plasmodesmatal frequency. Bot Gaz 150: 351–368

    Article  Google Scholar 

  • Mierzwa RJ, Evert RF (1984) Plasmodesmatal frequency in the root of sugar beet. Am J Bot 71: 39

    Google Scholar 

  • Minchin PEH, Pasumarty SV, Thorpe MS, Farrar JF, Fountain DW (1991) Use of carbon- 11 to investigate carbon partitioning. In: Bonnemain JL, Delrot S, Lucas WJ, Dainty J (eds) Recent advances in phloem transport and assimilate partitioning. Quest Editions, Nantes, pp 324–331

    Google Scholar 

  • Minchin PEH, Thorpe MR, Farrar JF (1993) A simple mechanistic model of phloem transport which explains sink priority. J Exp Bot 44: 947–955

    Article  Google Scholar 

  • Münch E (1930) Die Stoffbewegungen in der Pflanze. Fischer, Jena, 234 pp

    Google Scholar 

  • Murphy R, Aikmann DP (1989) An investigation of the relay hypothesis of phloem transport in Ricinus communis L. J Exp Bot 40: 1079–1088

    Article  Google Scholar 

  • Neumann S, Haupt S (1996) Sucrose hydrolysis by invertase is no prerequisite for the transfer of assimilates from host plants to the parasite Cuscuta reflexa. J Exp Bot 47 Spec Issue:1302–1303

    Google Scholar 

  • Ng CKY, Hew CS (1996) Pathway of phloem loading in the C3 tropical orchid hybrid Oncidium goldiana. J Exp Bot 47: 1935–1939

    Article  CAS  Google Scholar 

  • Nuske J, Eschrich W (1976) Synthesis of P-protein in mature phloem of Cucurbita maxima. Planta 132: 109–118

    Article  CAS  Google Scholar 

  • Oparka K (1990) What is phloem unloading? Plant Physiol 94: 393–396

    Article  PubMed  CAS  Google Scholar 

  • Oparka KJ, Duckett CM, Prior DAM, Fisher DB (1994) Real-time imaging of phloem unloading in the root tip of Arabidopsis. Plant J 6: 759–766

    Article  Google Scholar 

  • Orlich G, Komor E (1992) Phloem loading in Ricinus cotyledons - sucrose pathways via the mesophyll and the apoplasm. Planta 187: 460–474

    Article  CAS  Google Scholar 

  • Oross JW, Lucas WJ (1985) Sugar beet petiole structure: vascular anastomoses and phloem ultrastructure. Can J Bot 63: 2295–2304

    Article  Google Scholar 

  • Overall RL, Blackman LM (1996) A model of the macromolecular structure of plasmodesmata. Trends Plant Sci 1: 307–311

    Google Scholar 

  • Overall RL, Wolfe J, Gunning BES (1982) Ultrastructure of plasmodesmata. Protoplasma 111: 134–150

    Article  Google Scholar 

  • Overvoorde PJ, Frommer WB, Grimes HD (1996) A soybean sucrose binding protein independently mediates nonsaturable sucrose uptake in yeast. Plant Cell 8: 271–280

    Article  PubMed  CAS  Google Scholar 

  • Parthasarathy MV (1980) Mature phloem of perennial monocotyledons. Ber Dtsch Bot Ges 93: 57–70

    Google Scholar 

  • Patrick JW (1990) Sieve element unloading: cellular pathway, mechanism and control. Physiol Plant 78: 298–308

    Article  Google Scholar 

  • Patrick JW (1997) Phloem unloading: sieve element unloading and post-phloem transport. Annu Rev Plant Physiol Plant Mol Biol 48: 191–222

    Article  PubMed  CAS  Google Scholar 

  • Patrick JW, Offler CE (1995) Post-sieve element transport of sucrose in developing sinks. Aust J Physiol 22: 681–702

    Article  CAS  Google Scholar 

  • Pickard WF, Minchin PEH (1990) The transport inhibition of phloem translocation in Phaseolus vulgaris by abrupt temperature drops, vibration, and electric shock. J Exp Bot 41: 1361–1369

    Article  Google Scholar 

  • Pickard WF, Minchin PEH (1992a) The electroshock-induced inhibition of phloem translocation. J Exp Bot 43: 409–417

    Article  Google Scholar 

  • Pickard WF, Minchin PEH (1992b) The inhibition of phloem translocation by ammonia. J Exp Bot 43: 51–54

    Article  CAS  Google Scholar 

  • Pickard WF, Minchin PE (1992c) The nature of the short-term inhibition of stem translocation produced by abrupt stimuli. Aust J Plant Physiol 19: 471–480

    Article  Google Scholar 

  • Raven JA (1991) Long-term functioning of enucleate sieve elements - possible mechanisms of damage avoidance and damage repair. Plant Cell Environ 14: 139–146

    Article  Google Scholar 

  • Read SM, Northcote DH (1983) Chemical and immunological similarities between the phloem proteins of three genera of the Cucurbitaceae. Planta 158: 119–127

    Article  CAS  Google Scholar 

  • Riesmeier JW, Willmitzer L, Frommer WB (1992) Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J 11: 4705–4713

    PubMed  CAS  Google Scholar 

  • Riesmeier JW, Hirner B, Frommer WB (1993) Potato sucrose transporter expression in minor veins indicates a role in phloem loading. Plant Cell 5: 1591–1598

    Article  PubMed  CAS  Google Scholar 

  • Riesmeier JW, Willmitzer L, Frommer WB (1994) Evidence for an essential role of the sucrose transporter in phloem loading and assimilate partitionining. EMBO J 13: 1–7

    PubMed  CAS  Google Scholar 

  • Robards AW, Lucas WJ (1990) Plasmodesmata. Annu Rev Plant Physiol Plant Mol Biol 41: 369–419

    Article  Google Scholar 

  • Robinson-Beers K, Evert RF (1991) Ultrastructure of and plasmodesmatal frequency in mature leaves of sugarcane. Planta 184: 291–306

    Google Scholar 

  • Robinson-Beers K, Sharkey TD, Evert RF (1990) Import of 14C-photosynthate by developing leaves of sugarcane. Bot Acta 103: 424–429

    CAS  Google Scholar 

  • Russin WA, Evert RF, Vanderveer PJ, Sharkey TD, Briggs SP (1996) Modification of a specific class of plasmodesmata and loss of sucrose export ability in the sucrose export defective 1 maize mutant. Plant Cell 8: 645–658

    Article  PubMed  CAS  Google Scholar 

  • Sabnis DD, Sabnis HM (1995) Phloem proteins: structure, biochemistry and function. In: Iqbal M (ed) The cambial derivatives. Encyclopedia of plant anatomy, vol 9/4. Borntraeger, Berlin, pp 271–292

    Google Scholar 

  • Sakuth T, Schobert C, Pecsvaradi A, Eichholz A, Komor E, Orlich G (1993) Specific proteins in the sieve-tube exudate of Ricinus communis L. seedlings - separation, characterization and in vivo labelling. Planta 191: 207–213

    Article  CAS  Google Scholar 

  • Sauer N, Stolz J (1994) SUC1 and SUC2: two sucrose transporters from Arabidopsis thaliana; expression and characterization in baker’s yeast and identification of the histidine tagged protein. Plant J 6: 67–77

    Article  PubMed  CAS  Google Scholar 

  • Sauer N Tanner W (1993) Molecular biology of sugar transporters in plants. Bot Acta 106: 277–286

    CAS  Google Scholar 

  • Sauter JJ (1976) Untersuchungen zur Lokalisierung von Glycerophosphatase- und Nucleosidtriphosphatase-Aktivität in Siebzellen von Larix. Z Pflanzenphysiol 79: 254–271

    CAS  Google Scholar 

  • Sauter JJ (1977) Electron microscopical localization of adenosin triphosphatase and ß-glycerphosphatase in sieve cells of Pinus nigra var. Austriaca (Hoess) Battoux. Z Pflanzenphysiol 81: 438–458

    CAS  Google Scholar 

  • Sauter J J, Kloth S (1986) Plasmodesmatal frequency and radial translocation rates in ray cells of poplar (Populus canadensis Moench, “robusta”). Planta 168: 377–380

    Article  Google Scholar 

  • Scheirer DC (1990) Mosses. In: Behnke H-D, Sjolund RD (eds) Sieve elements - comparative structure, induction and development. Springer, Berlin Heidelberg New York, pp 19–33

    Google Scholar 

  • Schmitz K (1990) Algae. In: Behnke H-D, Sjolund RD (eds) Sieve elements–comparative structure, induction and development. Springer, Berlin Heidelberg New York, pp 1–18

    Google Scholar 

  • Schmitz K, Schneider A (1989) Structure and development of sieve cells in the secondary phloem of Larix decidua Mill, as related to function. Trees 4: 192–209

    Google Scholar 

  • Schobert C, Grossmann P, Gottschalk M, Komor E, Pecsvaradi A, Zurnieden U (1995) Sieve-tube exudate from Ricinus communis L. seedlings contains ubiquitin and chaperons. Planta 196: 205–210

    Article  CAS  Google Scholar 

  • Schulz A (1986a) Wound phloem in transition to bundle phloem in primary roots of Pisum sativum L. I. Development of bundle-leaving wound-sieve tubes. Protoplasma 130: 12–26

    Article  Google Scholar 

  • Schulz A (1986b) Wound phloem in transition to bundle phloem in primary roots of Pisum sativum L. II. The plasmatic contact between wound-sieve tubes and regular phloem. Protoplasma 130: 27–40

    Article  Google Scholar 

  • Schulz A (1987) Sieve-element differentiation and fluoresceine translocation in wound phloem of pea roots after the complete severance of the stele. Planta 170: 289–299

    Article  Google Scholar 

  • Schulz A (1990a) Conifers. In: Behnke H-D, Sjolund RD (eds) Sieve elements - comparative structure, induction and development. Springer, Berlin Heidelberg New York, pp 63–88

    Google Scholar 

  • Schulz A (1990b) Wound-sieve elements. In: Behnke H-D, Sjolund RD (eds) Sieve elements - comparative structure, induction and development. Springer, Berlin Heidelberg New York, pp 199–217

    Google Scholar 

  • Schulz A (1992) Living sieve cells of conifers as visualized by confocal, laser-scanning fluorescence microscopy. Protoplasma 166: 153–164

    Article  Google Scholar 

  • Schulz A (1993) Sink strength - the importance of the distance between phloem and receiver cells. Plant Cell Environ 16: 1031–1032

    Article  Google Scholar 

  • Schulz A (1994) Phloem transport and differential unloading in pea seedlings after source and sink manipulations. Planta 192: 239–248

    Article  CAS  Google Scholar 

  • Schulz A (1995) Piasmodesmal widening accompanies the short-term increase in symplasmic phloem unloading of pea root tips under osmotic stress. Protoplasma 188: 22–37

    Article  Google Scholar 

  • Schulz A (1996a) Experimentelle Untersuchungen zur Entwicklung und Funktion der Assimilatleitbahnen in Höheren Pflanzen. Habilitation Thesis, Christian-Albrechts- University, Kiel

    Google Scholar 

  • Schulz A (1996b) Symplasmic phloem unloading at the pea root tip allows to investigate into the plasmodesmatal structure and function under stress conditions. III. Int Worksh on Basic and applied research in plasmodesmatal biology, Israel, pp 162–167

    Google Scholar 

  • Schulz A, Behnke H-D (1986) Fluoreszenz- und elektronenmikroskopische Beobachtungen am Phloem von Buchen, Fichten und Tannen unterschiedlichen Schädigungsgrades, PEF reports, no 4. Kernforschungszentrum, Karlsruhe, pp 79–96

    Google Scholar 

  • Schulz A, Gersani M (1990) Regeneration of sucrose translocation in wounded roots of pea seedlings. J Plant Physiol 136: 599–605

    CAS  Google Scholar 

  • Schulz A, Pancke J (1996a) Phloem unloading under stress and exudation - a comparison. J Exp Bot 47 Spec Issue:1297

    Google Scholar 

  • Schulz A, Pancke J (1996b) Zur Auswirkung von CaCl2 und Ca-Chelatoren auf die Phloemexsudation und Siebplattencallose. Botanikertagung Düsseldorf, Abstracts, p 323

    Google Scholar 

  • Schulz A, Alosi MC, Sabnis DD, Park RB (1989) A phloem-specific, lectin-like protein is located in pine sieve-element plastids by immunocytochemistry. Planta 179: 506–515

    Article  CAS  Google Scholar 

  • Sjolund RD (1990a) Calcium and phloem sieve element membranes. Curr Top Plant Biochem Physiol 9: 101–118

    CAS  Google Scholar 

  • Sjolund RD (1990b) Sieve elements in tissue cultures: development, freeze-fracture and isolation. In: Behnke H-D, Sjolund RD (eds) Sieve elements - comparative structure, induction and development. Springer, Berlin Heidelberg New York, pp 179–198

    Google Scholar 

  • Sjölund RD (1996) Phloem in plant tissue cultures. Prog Bot 57: 356–367

    Google Scholar 

  • Sjolund RD, Shih CY (1983) Freeze-fracture analysis of phloem structure in plant tissue cultures. I. The sieve element reticulum. J Ultrastruct Res 82: 111–121

    Article  PubMed  CAS  Google Scholar 

  • Stadler R, Sauer N (1996) The Arabidopsis thaliana AtSUC2 gene is specifically expressed in companion cells. Bot Acta 109: 299–306

    CAS  Google Scholar 

  • Stadler R, Brandner J, Schulz A, Gahrtz M, Sauer N (1995) Phloem loading by the PmSUC2 sucrose carrier from Plantago major occurs into companion cells. Plant Cell 7: 1545–1554

    Article  PubMed  CAS  Google Scholar 

  • Stitt M (1996) Plasmodesmata play an essential role in sucrose export from leaves: a step towards an integration of metabolic export from leaves: a step toward an integration of metabolic biochemistry and cell biology. Plant Cell 8: 565–571

    Article  Google Scholar 

  • Thorsch J, Esau K (1981) Ultrastructural studies of protophloem sieve elements in Gossypium hirsutum. J Ultrastruct Res 75: 339–351

    Article  PubMed  CAS  Google Scholar 

  • Tiedemann R (1989) Graft union development and symplastic phloem contact in the heterograft Cucumis sativus on Cucurbita ficifolia. J Plant Physiol 134: 427–440

    Google Scholar 

  • Tiedemann R, Carstens-Behrens U (1994) Influence of grafting on the phloem protein patterns in Cucurbitaceae. I. Additional phloem exudate proteins in Cucumis sativus grafted on two Cucurbita species. J Plant Physiol 143: 189–194

    CAS  Google Scholar 

  • Tóth KF, Sjolund RD (1994) Monoclonal antibodies against phloem P-protein from plant tissue cultures. II. Taxonomic distribution of cross-reactivity. Am J Bot 81: 1378–1383

    Article  Google Scholar 

  • Tóth KF, Wang Q, Sjolund RD (1994) Monoclonal antibodies against phloem P-protein from plant tissue cultures. I. Microscopy and biochemical analysis. Am J Bot 81: 1370–1377

    Article  Google Scholar 

  • Truernit E, Sauer N (1995) The promoter of the Arabidopsis thaliana SUC2 sucrose-H+ symporter gene directs expression of beta-glucuronidase to the phloem: evidence for phloem loading and unloading by SUC2. Planta 196: 564–570

    Article  PubMed  CAS  Google Scholar 

  • Tucker JE, Manzerall D, Tucker EB (1989) Symplastic transport of carboxyfluorescein in staminal hairs of Setcreasea purpurea is diffusive and includes loss to the vacuole. Plant Physiol 90: 1143–1147

    Article  PubMed  CAS  Google Scholar 

  • Turgeon R (1989) The sink-source transition in leaves. Annu Rev Plant Physiol Plant Mol Biol 40: 119–138

    Article  Google Scholar 

  • Turgeon R (1996) Phloem loading and plasmodesmata. Trends Plant Sci 1. 418–423

    Article  Google Scholar 

  • Turgeon R, Beebe DU (1991) The evidence for symplastic phloem loading. Plant Physiology 96: 349–354

    Article  PubMed  CAS  Google Scholar 

  • Turgeon R, Webb JA, Evert RF (1975) Ultrastructure of minor veins in Cucurbita pepo leaves. Protoplasma 83: 217–232

    Article  Google Scholar 

  • Turgeon R, Beebe DU, Gowan E (1993) The intermediary cell - minor-vein anatomy and raffinose oligosaccharide synthesis in the Scrophulariaceae. Planta 191: 446–456

    Article  CAS  Google Scholar 

  • Urquhart AA, Joy KW (1981) Use of phloem exudate technique in the study of amino acids transport in pea plants. Plant Physiol 68: 750–754

    Article  PubMed  CAS  Google Scholar 

  • Van Bel AJE (1990) Xylem-phloem exchange via the rays: the undervalued route of transport. J Exp Bot 41: 631–644

    Article  Google Scholar 

  • Van Bel AJE (1993a) Strategies of phloem loading. Annu Rev Plant Physiol Plant Mol Biol 44: 253–281

    Article  Google Scholar 

  • Van Bel AJE (1993b) The transport phloem. Specifics of its functioning. Prog Bot 54: 134–150

    Google Scholar 

  • Van Bel AJE (1996a) Carbohydrate processing in the mesophyll trajectory in symplasmic and apoplasmic phloem loading. Prog Bot 57: 140–167

    Google Scholar 

  • Van Bel AJE (1996b) Interaction between sieve element and companion cell and the consequencens for photoassimilate distribution: two structural hardware frames with associated physiological software packages in dicotyledons. J Exp Bot 47 Spec Issued 129–1140

    Google Scholar 

  • Van Bel AJE, Gamalei YV (1992) Ecophysiology of phloem loading in source leaves. Plant Cell Environ 15: 266–270

    Article  Google Scholar 

  • Van Bel AJE, Kempers R (1997) The pore/plasmodesm unit; key element in the interplay between sieve element and companion cell. Prog Bot 58: 278–291

    Google Scholar 

  • Van Bel AJE, Oparka KJ (1995) On the validity of plasmodesmograms. Bot Acta 108: 174–182

    Google Scholar 

  • Van Bel AJE, Van Kesteren WJP, Papenhuijzen C (1988) Ultrastructural indications for coexistence of symplastic and apoplastic phloem loading in Commelina benghalensis leaves. Differences in ontogenetic development, spatial arrangement and symplasmic connections of the two sieve tubes in the minor veins. Planta 176: 159–172

    Article  Google Scholar 

  • Van Bel AJE, Ammerlaan A, Vandijk AA (1994) A 3-step screening procedure to identify the mode of phloem loading in intact leaves - evidence for symplasmic and apoplasmic phloem loading associated with the type of companion cell. Planta 192: 31–39

    Google Scholar 

  • Van Bel AJE, Hendricks JHM, Boon EJMC, Gamalei YV, Van der Merwe AP (1996) Different ratios of sucrose/raffinose induced membrane depolarizations in the mesophyll of species with symplasmic (Catharanthus roeseus, Ocimum basilicum) or apoplasmic (Impatiens walleriana, Vicia faba) minor vein configurations. Planta 199: 185–192

    Article  Google Scholar 

  • Volk GM, Turgeon R, Beebe DU (1996) Secondary plasmodesmata formation in the minor vein phloem of Cucumis melo L. and Cucurbita pepo L. Planta 199: 425–432

    Article  Google Scholar 

  • Waigmann E, Zambryski P (1994) Plasmodesmata - gateways for rapid information transfer. Curr Biol 4: 713–716

    Article  PubMed  CAS  Google Scholar 

  • Wang MB, Boulter D, Gatehouse J A (1994) Characterization and sequencing of a cDNA clone encoding the phloem protein PP2 of Cucurbita pepo. Plant Mol Biol 24: 159–170

    Article  PubMed  CAS  Google Scholar 

  • Wang N, Fisher DB (1994a) Monitoring phloem unloading and post-phloem transport by microperfusion of attached wheat grains. Plant Physiol 104: 7–16

    PubMed  CAS  Google Scholar 

  • Wang N Fischer DB (1994b) The use of fluorescent tracers to characterize the post- phloem transport in maternal tissue of developing wheat grains. Plant Physiol 104: 17–27

    PubMed  CAS  Google Scholar 

  • Wang Q, Monroe J, Sjolund RD (1995) Identification and characterization of a phloem- specific P-amylase. Plant Physiol 109: 743–750

    Article  PubMed  CAS  Google Scholar 

  • Warmbrodt RD (1985) Studies on the root of Hordeum vulgare L. - ultrastructure of the seminal root with special reference to the phloem. Am J Bot 72: 414–432

    Article  Google Scholar 

  • Warmbrodt RD (1987) Solute concentrations in the phloem and apex of the root of Zea mays. Am J Bot 74: 394–402

    Article  Google Scholar 

  • Warmbrodt RD, Buckhout TJ, Hitz WD (1989) Localization of a protein immunologically similar to a sucrose-binding protein from developing soybean cotyledons, on the plasma membrane of sieve-tube members of spinach leaves. Planta 180: 105–115

    Article  CAS  Google Scholar 

  • Weig A, Komor E (1996) An active sucrose carrier (Scrl) that is predominantly expressed in the seedling of Ricinus communis L. J Plant Physiol 147: 685–690

    CAS  Google Scholar 

  • White RG, Badelt K, Overall RL, Vesk M (1994) Actin associated with plasmodesmata. Protoplasma 180: 169–184

    Article  CAS  Google Scholar 

  • Williamson B, Goodman BA, Chudek JA, Hunter G, Lohman JAB (1994) The vascular architecture of the fruit receptacle of red raspberry determined by 3D NMR microscopy and surface-rendering techniques. New Phytol 128: 39–44

    Article  Google Scholar 

  • Wimmers LE, Turgeon R (1991) Transfer cells and solute uptake in minor veins of Pisum sativum leaves. Planta 186: 2–12

    Article  CAS  Google Scholar 

  • Wooding FBP (1974) Development and fine structure of angiosperm and gymnosperm sieve tubes. Symp Soc Exp Biol 28: 27–41

    PubMed  Google Scholar 

  • Wright KM, Oparka KJ (1996) The fluorescent probe HPTS as a phloem mobile, symplastic tracer: an evaluation using confocal laser scanning microscopy. J Exp Bot 47: 439–445

    Article  CAS  Google Scholar 

  • Zymbryski P (1995) Plasmodesmata: plant channels for molecules on the move. Science 270: 1943–1944

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Prof. Dr. R. Kollmann on the occasion of his 65th Birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schulz, A. (1998). Phloem. Structure Related to Function. In: Behnke, HD., Esser, K., Kadereit, J.W., Lüttge, U., Runge, M. (eds) Progress in Botany. Progress in Botany, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80446-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80446-5_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80448-9

  • Online ISBN: 978-3-642-80446-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics