Skip to main content

Perfusion Imaging with Echo-Planar Imaging

  • Chapter
Echo-Planar Imaging

Abstract

The introduction of nuclear magnetic resonance (NMR) into medicine [1] initially created hopes that this totally noninvasive imaging modality would be able to differentiate clearly between healthy and pathological tissue on the basis of T1 and T2 signals [2]. As originally conceived, however, these hopes were overly optimistic as they assumed that parameters characterizing processes on a nuclear or molecular scale could provide a sensitive and specific means of characterizing disease processes which, although ultimately based on molecular derangements, manifest themselves on a micro- and macrostructural and functional level. Thus MRI techniques geared towards elucidating these pathophysiological processes had to be developed.

“Where shall I climb, sound, seek, search, or find that summum bonum which may stay my mind? ... The depth and sea have said ‘tis not in me,’ With pearl and gold it shall not valued be.... It yieldeth pleasures far beyond conceit, And truly beautifies without deceit. Nor strength, nor wisdom, nor fresh youth shall fade, Nor death shall see, but are immortal made. This pearl of price, this tree of life, this spring, Who is possessed of shall reign a king. Nor change of state nor cares shall ever see, But wear his crown unto eternity. This satiates the soul, this stays the mind, And all the rest, hut vanity we find.”

from: The Vanity of All Worldly Things, Anne Bradstreet, ca. 1612–1672

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lauerbur PC (1973) Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242:190

    Article  Google Scholar 

  2. Damadian R, Zaner K, Hor D et al (1973) Human tumors by NMR. Physiol Chem Phys 5:381–402

    PubMed  CAS  Google Scholar 

  3. Low RN (1997) Contrast agents for MR imaging of the liver. J Magn Reson Imaging 7:56–67

    Article  PubMed  CAS  Google Scholar 

  4. Leenders KL, Perani D et al (1990) Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain 113:27–47

    Article  PubMed  Google Scholar 

  5. Steward GN (1894) Researches on the circulation time and on influences which affect it. J Physiol (London) 15:1

    Google Scholar 

  6. Pappata S, Fiorelli M et al (1993) PET study of changes in local brain hemodynamics and oxygen metabolism after unilateral middle cerebral artery occlusion in baboons. J Cereb Blood Flow Metab 13(3):416–24

    Article  PubMed  CAS  Google Scholar 

  7. Heiss WD, Graf R et al (1994) Dynamic penumbra demonstrated by sequential multitracer PET after middle cerebral artery occlusion in cats. J Cereb Blood Flow Metab 14(6):892–902

    Article  PubMed  CAS  Google Scholar 

  8. Bartolini A, Gasparetto B et al (1993) Functional vascular volume and blood-brain barrier permeability images by angio-CT in the diagnosis of cerebral lesions. Comput Med Imaging Graph 17(1):35–44

    Article  PubMed  CAS  Google Scholar 

  9. Feldmann HJ, Sievers K et al (1993) Evaluation of tumor blood perfusion by dynamic MRI and CT in patients undergoing thermoradiotherapy. Eur J Radiol 16(3):224–229

    Article  PubMed  CAS  Google Scholar 

  10. Grosset, DG, McDonald I et al (1994) Prediction of delayed neurological deficit after subarachnoid haemorrhage: a CT blood load and Doppler velocity approach. Neuroradiology 36(6):418–21

    Article  PubMed  CAS  Google Scholar 

  11. Nambu K, Suzuki R et al (1995) Cerebral blood flow: measurement with xenon-enhanced dynamic helical CT. Radiology 195(1):53–57

    PubMed  CAS  Google Scholar 

  12. Pawlik G, Rackl A, Bing RJ (1981) Quantitative capillary topography and blood flow in the cerebral cortex of cats: an in vivo microscopic study. Brain Res 208:35–58

    Article  PubMed  CAS  Google Scholar 

  13. Frahm J, Merbold KO et al (1992) Functional MRI of human brain activation at high spatial resolution. Magn Reson Med 29:139–144

    Article  Google Scholar 

  14. Stehling MK, Turner R, Mansfield P (1991) Echo-planar imaging: magnetic resonance imaging in a fraction of a second. Science 254(5028):43–50

    Article  PubMed  CAS  Google Scholar 

  15. Cohen MS, Weisskoff RM (1991) Ultrafast imaging. Magn Reson Imaging 9:1–37

    Article  PubMed  CAS  Google Scholar 

  16. Brasch R, Pham C, Shames D et al (1997) Assessing tumor angiogenesis using macromolecular MR imaging contrast media. J Magn Reson Imaging 7:68–74

    Article  PubMed  CAS  Google Scholar 

  17. Griebel J, Mayr NA, de Vries A et al (1997) Assessment of tumor microcirculation: a new role of dynamic contrast mr imaging. J Magn Reson Imaging 7:111–119

    Article  PubMed  CAS  Google Scholar 

  18. Wenz F, Rempp K et al (1996) Effect of radiation on blood volume in low-grade astrocytomas and normal brain tissue: quantification with dynamic susceptibility contrast MR imaging. Am J Roentgenol 166(1):187–193

    CAS  Google Scholar 

  19. Aronen HJ, Gazit IE et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191(1):41–51

    PubMed  CAS  Google Scholar 

  20. Le Bihan D, Turner R (1992) The capillary network: a link between IVIM and clssical perfusion. Magn Reson Med 27:171–178

    Article  PubMed  Google Scholar 

  21. Fick A (1948) Verhandl dtsch physmed Gesellschaft zu Würzburg 1870, p 36

    Google Scholar 

  22. Hoff HE, Scott HJ (1948) N Engl J Med 239:122

    Google Scholar 

  23. Lassen NA (1984) Cerebral transit of an intravascular tracer may allow measurement of regional blood volume but not regional blood flow. J Cereb Blood Flow Metab 4:633–634

    Article  PubMed  CAS  Google Scholar 

  24. Rosen BR, Belliveau JW et al (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14(2):249–265

    Article  PubMed  CAS  Google Scholar 

  25. Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM (1995) MR contrast due to intravascular magnetic susceptibility pertubations. Magn Reson Med 34:555–566

    Article  PubMed  CAS  Google Scholar 

  26. Rosen BR, Belliveau JW et al (1991) Contrast agents and cerebral hemodynamics. Magn Reson Med 19(2):285–292

    Article  PubMed  CAS  Google Scholar 

  27. Canty JM, Judd RM et al (1991) First-pass entry of nonionic contrast agent into the myocardial extravascular space. Circulation 84:2071–2078

    PubMed  CAS  Google Scholar 

  28. Dean BL, Lee C et al (1992) Cerebral hemodynamics and cerebral blood volume: MR assessment using gadolinium contrast agents and T1-weighted Turbo-FLASH imaging. Am J Neuroradiol 13(1):39–48

    PubMed  CAS  Google Scholar 

  29. Judd RM, Atalay MK et al (1995) Effects of myocardial water exchange on T1 enhancement during bolus administration of MR contrast agents. Magn Reson Med 33(2):215–223

    Article  PubMed  CAS  Google Scholar 

  30. Mathur-De Vre R, Lemort M (1995) Invited review: biophysical properties and clinical applications of magnetic resonance imaging contrast agents. Br J Radiol 68(807):225–247

    Article  Google Scholar 

  31. Reith W, Forsting M et al (1995) Early MR detection of experimentally induced cerebral ischemia using magnetic susceptibility contrast agents: comparison between gadopentetate dimeglumine and iron oxide particles. Am J Neuroradiol 16(1):53–60

    PubMed  CAS  Google Scholar 

  32. Dwek RA (1973) Nuclear magnetic resonance in biochemistry: applications to enzyme systems. Clarendon, Oxford

    Google Scholar 

  33. Villringer A, Rosen BR (1988) et al Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med 6(2): 164–174

    Article  PubMed  CAS  Google Scholar 

  34. Fisel CR, Ackerman JL et al (1991) MR contrast due to microscopically heterogeneous magnetic susceptibility: numerical simulations and applications to cerebral physiology. Magn Reson Med 17(2):336–347

    Article  PubMed  CAS  Google Scholar 

  35. Rosen BR, Belliveau JW et al (1991) Susceptibility contrast imaging of cerebral blood volume: human experience. Magn Reson Med 22(2):293–299

    Article  PubMed  CAS  Google Scholar 

  36. Goodstein DL (1975) States of matter. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  37. Chu SCK, Xu Y, Baischi JA, Springer CS (1990) Magn Reson Med 13:239

    Article  PubMed  CAS  Google Scholar 

  38. Boudreaux EA, Mulay LN (1976) Theory and application of molecular paramagnetism. Wiley, New York

    Google Scholar 

  39. Burke HE (1986) Handbook of magnetic phenomena. Van Nostrad-Reinhold, New York

    Google Scholar 

  40. Bean CP, Livingston JD (1959) J Appl Phys 30:1205

    Article  Google Scholar 

  41. Solomon I (1955) Relaxation processes in a system of two spins. Phys Rev 99:559–565

    Article  CAS  Google Scholar 

  42. Bloembergen N (1957) J Chem Phys 27:572

    Article  CAS  Google Scholar 

  43. Wismer GL, Buxton RB, Rosen BR et al (1988) Susceptibility induced MR line broadening: applications to brain iron mapping. J Comput Assist Tomogr 12:259

    Article  PubMed  CAS  Google Scholar 

  44. Belliveau JW, Rosen BR, Kantor HL et al (1990) Functional cerebral imaging by susceptibility contrast NMR. Magn Reson Med 14(3):538–546

    Article  PubMed  CAS  Google Scholar 

  45. Gillis P, Koenig SH (1987) Transverse relaxation of solvent protons induced by magnetized spheres: application to ferritin, erythrocytes and magnetite. Magn Reson Med 5:323–345

    Article  PubMed  CAS  Google Scholar 

  46. Majumdar S, Gore JC (1989) Regional differences in rat brain displayed by fast MRI with superparamagnetic contrast agents. Magn Reson, C Med 6(6):611–5

    Google Scholar 

  47. Case TA, Durney CH, Ailion DC et al (1987) J Magn Reson 73:304

    Article  Google Scholar 

  48. Fisel CR, Ackerman JL, Buxton RB et al (1991) MR contrast due to microscopically heterogenous magnetic susceptibility: numerical simulations and applications to cerebral physiology. Magn Reson Med 17(2):336–347

    Article  PubMed  CAS  Google Scholar 

  49. Ehrlich P (1913) Chemotherapeutics: Scientific principles, methods, and results. Lancet 2:445–451

    Google Scholar 

  50. Kndel ER, Schwartz JH (eds) (1981) Principles of neural science. Edward Arnold, London

    Google Scholar 

  51. Weisskoff RM, Zuo CS, Boxerman JL, Rosen BR (1994) Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magn Reson Med 31:601–610

    Article  PubMed  CAS  Google Scholar 

  52. Yablonskiy DA, Haacke EM (1994) Theory of NMR signal behaviour in magnetically inhomogenous tissues: the static dephasing regime. Magn Reson Med 32:749–763

    Article  PubMed  CAS  Google Scholar 

  53. Kennan RP, Zhong J, Gore JC (1994) Intravascular susceptibility contrast mechanisms in tissues. Magn Reson Med 31:9–21

    Article  PubMed  CAS  Google Scholar 

  54. Gillis P, Petö S, Moiny F, Mispelter J, Cuenod C-A (1995) Proton transverse nuclear magnetic relaxation in oxidized blood: a numerical approach. Magn Reson Med 33:93–100

    Article  PubMed  CAS  Google Scholar 

  55. Meier P, Zierler K (1954) On the theory of the indicator-dilution method for assessment of blood flow and volume. J Appl Physiol 6:731–744

    PubMed  CAS  Google Scholar 

  56. Larsen OA, Lassen NA (1964) Cerebral hematocrit in normal man. J Appl Physiol 19(4):571–574

    PubMed  CAS  Google Scholar 

  57. Weisskoff RM, Chesler D, Boxerman JL, Rosen BR (1993) Pitfalls in MR measurements of tissue blood flow with intravascular tracers: which mean transit time? Magn Reson Med 29:553–559

    Article  PubMed  CAS  Google Scholar 

  58. Bassingthwaithe JB, Goresky CA (1984) In: Renkin EM, Michel CG (eds) Handbook of physiology, sect 2. American Physiology Society, Bethesda, pp 549–626

    Google Scholar 

  59. Lassen NA, Henriksen O, Sejrsen P (1984) In: Shepherd JT, Abboud FM Handbook of physiology, sect 2. American Physiology Society, Bethesda, pp 21–64

    Google Scholar 

  60. Jacquez JA (1972) In: Compartmental analysis in biology an medicine. Kinetics and distribution of tracer labeled materials. Elsevier, Amsterdam, pp 84–101

    Google Scholar 

  61. Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. I. Mathematical approach and statistical analysis. Magn Reson Med 36:715–725

    Article  PubMed  Google Scholar 

  62. Valentinuzzi ME, Volachec MM (1975) Discrete deconvolution. Med Biol Eng 13:123–125

    Article  PubMed  CAS  Google Scholar 

  63. Todd-Pokropek A (1988) In: Rescigno A, Boicelli A (eds) Cerebral blood flow. Mathematical models, instrumentation, and imaging techniques. Plenum, New York, pp 107–119

    Google Scholar 

  64. Bronikowski TA, Dawson CA, Linehan JH (1983) Model-free deconvolution techniques for estimating vascular transport functions. Int J Biomed Comput 14:411–429

    Article  PubMed  CAS  Google Scholar 

  65. Østergaard L, Sorensen AG, Kwong KK et al (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. II. Experimental comparison and preliminary results. Magn Reson Med 36:726–736

    Article  PubMed  Google Scholar 

  66. Thompson HK, Starmer CF, Whalen RE, Mcintosh HD (1964) Indicator transit time considered as a gamma variate. Circ Res 14:502–515

    PubMed  Google Scholar 

  67. Starmer CF, Clark DO (1970) Computer computations of cardiac output using the gamma function. J Appl Physiol 28:219–20

    PubMed  CAS  Google Scholar 

  68. Berninger WH, Axel L, Norman D, Napel S, Redington RW (1981) Functional imaging of the brain using computed tomography [published erratum appears in Radiology 1989 Jun; 171(3):878. Radiology 138(3):711–6

    PubMed  CAS  Google Scholar 

  69. Axel L (1980) Cerebral blood flow determination by rapid sequence computed tomography. Radiology 137:679–686

    PubMed  CAS  Google Scholar 

  70. Zierler KL (1965) Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res 16:393–407

    Google Scholar 

  71. Axel L (1983) Tissue mean transit time from dynamic computer tomography by a simple deconvolution technique. Invest Radiol 18:94–9

    Article  PubMed  CAS  Google Scholar 

  72. Lassen NA, Perl W (1979) Tracer kinetic methods in medical physiology. Raven, New York

    Google Scholar 

  73. Rempp KA, Brix G, Wenz F et al (1994) Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 193:637–641

    PubMed  CAS  Google Scholar 

  74. Perman WH, Gado MH, Larson KB, Perlmutter JS (1992) Simultaneous MR acquisition of arterial and brain signal-time curves. Magn Reson Med 28:74–83

    Article  PubMed  CAS  Google Scholar 

  75. Press WH, Flannary BR, Teukolsky SA, Vetterling WT (1986) Numerical recipes: the art of scientific computing. Cambridge University Press, Cambridge, pp 417–420

    Google Scholar 

  76. Phelps ME, Hawkins RA (1988), PET in clinical oncology. Cancer metastasis Rev 7(2):119–42

    Article  PubMed  Google Scholar 

  77. Grubb RL, Raichle ME, Eichung JO, Ter-Pogossian MM (1974) The effects of changes in PaCO2 on cerebral blood volume “blood flow” and vascular mean transit time. Stroke 5:630–9

    Article  PubMed  Google Scholar 

  78. Raichle ME (1987) In: Plum F (eds) Handbook of physiology: the nervous system, vol V. American Physiological Society, Bethesda, p 643

    Google Scholar 

  79. Phelps ME, Mazziotta JC (1985) Positron emission tomography: human brain function and biochemistry. Science 28:799–809

    Article  Google Scholar 

  80. Archer DP, Labrecque P et al (1990) Measurement of cerebral blood flow and volume with positron emission tomography during isoflurane administration in the hypocapnic baboon. Anesthesiology 72(6): 1031–1037 [published erratum appears in 73(4):798]

    Article  PubMed  CAS  Google Scholar 

  81. Aronen HJ, Glass J et al (1995) Echo-planar MR cerebral blood volume mapping of gliomas. Clinical utility. Acta Radiol 36(5):520–528

    PubMed  CAS  Google Scholar 

  82. Gowland P, Mansfield P et al (1992/93) Dynamic studies of gadolinium uptake in brain tumors using inversion-recovery echo planar imaging. Magn Reson Med 192(26):241–258

    Article  Google Scholar 

  83. Groshar D, McEwan AJ et al (1993) Imaging tumor hypoxia and tumor perfusion. J Nucl Med 34(6):885–888

    PubMed  CAS  Google Scholar 

  84. Maeda M, Itoh S et al (1993) Tumor vascularity in the brain: evaluation with dynamic susceptibility-contrast MR imaging. Radiology 189(1):233–238

    PubMed  CAS  Google Scholar 

  85. Wenz F, Lohr F et al (1994) Flow cytometric measurement of proliferating cell nuclear antigen (PCNA) in solid tumors. Strahlenther Onkol 170(4):235–242

    PubMed  CAS  Google Scholar 

  86. Boeck J, Wlodarczyk W et al (1995) Regional cerebral blood volume of intracranial tumors determined by MRI. Eur Radiol 5:528–533

    Google Scholar 

  87. Kleihues P, Burger PC, Scheithauer BW (1993) Histological typing of tumors of the central nervous system, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  88. Daumas-Duport C, Scheithauer B, O’Fallon J, Kelly P (1988) Grading of astrocytomas: a simple and reproducible method. Cancer 62:2152–2165

    Article  PubMed  CAS  Google Scholar 

  89. Bruening R, Wu RH, Yousry TA et al (1998) Regional relative blood volume (rBV) MR maps of meningiomas before and after partial embolization. J Comput Assist Tomogr (accepted)

    Google Scholar 

  90. Krueck WG, Schmiedl UD et al (1994) MR Assessment of radiation-induced blood-brain barrier permeability changes in a rat glioma model. Am J Neuroradiol 15:625–632

    PubMed  CAS  Google Scholar 

  91. Frackowiak RS J, Lenzi GL, Jones T, Heather JD (1980) Quantitative assessment of regional cerebral blood flow and oxygen metabolism in man using 150 and positron emission tomography: theory, procedure and normal values. J Comput Assist Tomogr 4:727–736

    Article  PubMed  CAS  Google Scholar 

  92. Gückel F, Brix G, Rempp K et al (1994) Assessment of cerebral blood volume with dynamic susceptibility contrast-enhanced gradient echo imaging. J Comput Assist Tomogr 18:344–351

    Article  PubMed  Google Scholar 

  93. Rother J, Guckel F et al (1996) Assessment of regional cerebral blood volume in acute human stroke by use of single-slice dynamic susceptibility contrast-enhanced magnetic resonance imaging. Stroke 27(6):1088–1093

    Article  PubMed  CAS  Google Scholar 

  94. Sorensen A, Buonanno F et al (1996) Hyperacute stroke: evaluation with combined multisection diffusion-weighted and hemodynamically weighted echo-planar MR imaging. Radiology 199:391–401

    PubMed  CAS  Google Scholar 

  95. Moseley ME, Kucharczyk J et al (1990) Diffusion-weighted MR imaging of acute stroke: correlation with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats. Am J Neuroradiol 11:423–429

    PubMed  CAS  Google Scholar 

  96. Moseley ME, Mintorovitch J et al (1990) Early detection of ischemic injury: comparison of spectroscopy, diffusion-, T2-, and magnetic susceptibility-weighted MRI in cats. Acta Neurochirurgica 51 [Suppl]:207–209

    PubMed  CAS  Google Scholar 

  97. De Crespigny AJ, Wendland MF et al (1992) Real-time observation of transient focal ischemia and hyperthermia in cat brain. Magn Reson Med 27:391–397

    Article  PubMed  Google Scholar 

  98. De Crespigny AJ, Tsuura M et al (1993) Perfusion and diffusion MR imaging of thromboembolic stroke. J Magn Reson Imaging 3(5):746–754

    Article  PubMed  Google Scholar 

  99. Warach S, Levin JM, Schomer DL, Holman BL, Edelman RR (1994) Hyperperfusion of ictal seizure focus demonstrated by MR perfusion imaging. AJNR Am J Neuroradiol 15:965–968

    PubMed  CAS  Google Scholar 

  100. Wu RH, Bruening R, Noachter S et al (1998) MR measurement of regional relative cerebral blood volume in epilepsy. AJNR Am J Neuroradiol (submitted)

    Google Scholar 

  101. Harris GJ, Lewis RF, Satlin A et al (1996) Dynamic susceptibility contrast MRI of regional cerebral blood volume in Alzheimer’s disease. Am J Psychiatry 153(5):721–724

    PubMed  CAS  Google Scholar 

  102. Folstein MF, Folstein SE, McHugh PR (1975) “Minimental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  PubMed  CAS  Google Scholar 

  103. Pearlson GD, Harris GJ, Powers RE et al (1992) Quantitative changes in mesial temporal volume, regional cerebral blood flow, and cognition in Alzheimer’s disease. Arch Gen Psychiatry 49:402–408

    Article  PubMed  CAS  Google Scholar 

  104. Fazekas F, Alavi A, Chawluk JB et al (1989) Comparison of CT, MR, and PET in Alzheimer’s dementia and normal aging. J Nucl Med 30:1607–1615

    PubMed  CAS  Google Scholar 

  105. Li K-L (1987) Protective effects of Captopril and enalapril on myocardial ischemia and reperfusion damage of rat. J Mol Cell Cardiol

    Google Scholar 

  106. Volkow ND, Mullani N, Gould KL, Adler S, Drajewski K (1988) Cerebral blood flow in chronic cocaine users: A study with positron emission tomography. Br J Psychiatry 152:641–648

    Article  PubMed  CAS  Google Scholar 

  107. Stein EA, Fuller SA (1993) Cocaine’s time action profile on regional cerebral blood flow in the rat. Brain Res 626:117–126

    Article  PubMed  CAS  Google Scholar 

  108. Toyama H, Takeshita G, Tekeuchi A et al (1990) Cerebral hemodynamics in patients with chronic obstructive carotid disease by rCBF, rCBV, and rCBV/rCBF ratio using SPECT. J Nucl Med 31:55–60

    PubMed  CAS  Google Scholar 

  109. Knapp WH, Kummer RV, Kybler W (1986) Imaging of cerebral blood flow-to-volume distribution using SPECT. J Nucl Med 27:465–470

    PubMed  CAS  Google Scholar 

  110. Alsaadi BM, Rossotti FJC, Williams RJP (1980) A pmr study of the effects of pH and anion and metal ion binding of the histidyl residues of ovotransferrin. J Inorg Biochem

    Google Scholar 

  111. Strich G, Hagan PL, Gerber KH, Slutsky RA (1985) Radiology 154:723

    PubMed  CAS  Google Scholar 

  112. Donahue KM, Burtsein D, Manning WJ, Gray ML (1994) Studies of Gd-DTPA relaxivity and proton exchange rates in tissue. Magn Reson Med 32:66–76

    Article  PubMed  CAS  Google Scholar 

  113. Hacklaender T (1995) Parametric images of cerebral blood volume with T1 FLASH sequences. Roentgenpraxis 48:146–152

    Google Scholar 

  114. Hacklaeder T, Hofer M et al (1995) Kernspintomographische Blutvolumenmessungen in der Diagnostik des Schlaganfalls: Ergebnisse einer klinischen Pilotstudie. ROFO Fortschr Geb Röntgenstr Neuen Bildgeb Verfahr 164:206–211

    Article  Google Scholar 

  115. Bartolini A, Gasparetto B et al (1994) Functional circulation and blood-brain permeability images by angio CT in the assessment of cerebral ischemia. Comput Med Imaging Graph 18(3):151–161

    Article  PubMed  CAS  Google Scholar 

  116. Bartolini A, Gasparetto B et al (1994) Functional perfusion and blood-brain barrier permeability images in the diagnosis of cerebral tumors by Angio CT. Comput Med Imaging Graph 18(3):145–150

    Article  PubMed  CAS  Google Scholar 

  117. Di Rocco RJ, Silva DA et al (1993) The single-pass cerebral extraction and capillary permeability-surface area product of several putative cerebral blood flow imaging agents. J Nucl Med 34:641–648

    PubMed  Google Scholar 

  118. Sage MR, Wilson AJ (1994) The blood-brain barrier: An important concept in neuroimaging. AJNR Am J Neuroradiol 15(4):601–622

    PubMed  CAS  Google Scholar 

  119. Bruening R, Kwong KK, Vevea MJ et al (1996) Echo-planar MR determination of regional cerebral blood volume in human brain tumors: T1 versus T2 weighting. AJNR Am J Neuroradiol 17:831–840

    PubMed  CAS  Google Scholar 

  120. Fidler I, Ellis L (1994) The implication of angiogenesis for the biology and therapy of cancer metastases. Cell 79:185–188

    Article  PubMed  CAS  Google Scholar 

  121. Weidner N (1995) Intratumoral microvascular density as a prognostic factor in cancer. Am J Pathol 147:9–19

    PubMed  CAS  Google Scholar 

  122. Aicher KP, Dupon JW, White DL et al (1990) Contrast-enhanced magnetic resonance imaging of tumor-bearing mice treated with human recombinant tumor necrosis factor alpha. Cancer Res 50:7376–7381

    PubMed  CAS  Google Scholar 

  123. van Dijke C, Brasch R, Roberts T et al (1996) Mammary carcinoma model: correlation of macromolecular contrast enhanced MR imaging characterizations of tumor microvasculature and histologic capillary density. Radiology 198:813–818

    PubMed  Google Scholar 

  124. Schwickert H, Stiskal M, Roberts T et al (1996) Contrast-enhanced MRI assessment of tumor capillary permeability: the effect of pre-irradiation on the tumor delivery of chemotherapy. Radiology 198:893–898

    PubMed  CAS  Google Scholar 

  125. Shames D, Kuwatsuru R, Vexier V, Muehler A, Brasch R (1993) Measurement of capillary permeability to macromolecules by dyamic magnetic resonance imaging: a quantitative non-invasive technique. Magn Reson Med 29:616–622

    Article  PubMed  CAS  Google Scholar 

  126. Jain R (1994) Barriers to drug delivery in solid tumors. Sci Am 58–65

    Google Scholar 

  127. Song C (1984) Effect of local hyperthermia in blood flow and microenvironment: a review. Cancer Res 44:4721S–4730S

    PubMed  CAS  Google Scholar 

  128. Gray LH, Conger AD, Ebert M (1953) The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 26:638–648

    Article  PubMed  CAS  Google Scholar 

  129. Kety S (1949) Measurement of regional circulation by the local clearance of radioactive sodium. Am Heart J 38:321–328

    Article  PubMed  CAS  Google Scholar 

  130. Kety S (1951) The theory and application of the exchange of inert gas at the lungs and tissues. Pharmacol Rev 3:1–41

    PubMed  CAS  Google Scholar 

  131. Larsson H, Fritz-Hansen T, Rostrup E, Sondergaard L (1996) Myocardial perfusion modeling using MRI. Magn Reson Med 35:716–726

    Article  PubMed  CAS  Google Scholar 

  132. Detre J, Leigh J, Williams D, Koretzsky A (1992) Perfusion imaging. Magn Reson Med 23:37–45

    Article  PubMed  CAS  Google Scholar 

  133. Raichle ME, Eichling JO, Straatmann MG et al (1976) Blood-brain barrier permeability of 11C-labeled alcohols and 15O-labeled water. Amer J Physiol 230:543–552

    PubMed  CAS  Google Scholar 

  134. Detre JA, Zhang W, Roberts DA, Silva DS, Grandis DJ, Koretsky AP, Leigh JS (1994) Tissue specific perfusion imaging using arterial spin labeling. NMR Biomed 7(1-2):75–82

    Article  PubMed  CAS  Google Scholar 

  135. Nishiimura DG, Macovski A, Pauly JM, Conolly AM (1987) MR angiography by selective inversion recovery. Magn Reson Med 4:193–202

    Article  Google Scholar 

  136. Kwong KK, Chesler DA, Weisskoff RM et al (1995) MR perfusion studies with T1 weighted echo planar imaging. Magn Reson Med 34:878–87

    Article  PubMed  CAS  Google Scholar 

  137. Edelman RR, Siewert B, Darby DG et al (1994) Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency. Radiology 192:513–520

    PubMed  CAS  Google Scholar 

  138. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87(24):9868–72

    Article  PubMed  CAS  Google Scholar 

  139. Le Bihan D, Breton E, Lallemand D et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407

    PubMed  Google Scholar 

  140. Stejskal EO, Tanner JE (1965) Use of spin echo in a pulsed magnetic field gradient to study anisotropic restricted diffusion and flow. J Chem Phys 43:3579

    Article  Google Scholar 

  141. Le Bihan D, Breton E, Lallemand D et al (1988) Separation of diffusion and perfusion in intravoxel incoherent motion (IVIM) MR imaging. Radiology 168:497–505

    PubMed  Google Scholar 

  142. Le Bihan D, Moonen CTW, Van Zijl PCM, Pekar J, DesPres D (1991) Measuring random microscopic motion of water in tissues with MR imaging: a cat brain study. J Comput Assist Tomogr 15:19–25

    Article  PubMed  Google Scholar 

  143. Fatouros PP, Marmarou A (1991) In vivo brain water determination by T1 measurements: effect of total water content’ hydration fraction’ and field strength Mag Reson Med 17(2):402–13

    CAS  Google Scholar 

  144. Powers TA, Lorentz CH, Holburn GE, Prince RR (1991) Renal artery stenosis: in vivo perfusion MR imaging. Radiology 178:543–8

    PubMed  CAS  Google Scholar 

  145. McKinstry RC, Belliveau JW, Moore JB et al (1992) Ultrafast MR imaging of water mobility, animal models of altered cerebral perfusion. J Magn Reson Imaging 2:377–84

    Article  PubMed  CAS  Google Scholar 

  146. Kwong KK, Reimer P, Weisskoff R, Cohen MS, Brady TJ, Weissleder R (1992) Dynamic signal intensity changes in liver with superparamagnetic MR contrast agents 2(2):177–81

    Google Scholar 

  147. Eichung JO, Raichle ME, Grubb RL, Ter-Pogossian MM (1974) Evidence of the limitations of water as freely diffusible tracer in brain of the rhesus monkey. Circ Res 35(3):358–64

    Google Scholar 

  148. Frase PA, Dallas AD (1990) Measurement of filtration coefficient in single cerebral microvessets of the frog. J Physiol 423:343–61

    Google Scholar 

  149. Kim S-G, Ackerman JH (1988) Multicompartment analysis of blood flow and tissue perfusion employing D2O as a freely diffusible tracer: a novel deuterium NMR technique demonstrated with murine RIF-1 tumors. Magn Reson Med 8:410–426

    Article  PubMed  CAS  Google Scholar 

  150. Kim S-G, Ackerman JH (1988) Quantitative determination of tumor blood flow and perfusion via deuterium nuclear magnetic resonance spectroscopy in mice. Cancer Res 48(12):3449–53

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stehling, M.K., Brüning, R., Rosen, B.R. (1998). Perfusion Imaging with Echo-Planar Imaging. In: Echo-Planar Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80443-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80443-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80445-8

  • Online ISBN: 978-3-642-80443-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics