Echo-Planar Imaging of the Abdomen

  • P. Reimer
  • R. Ladebeck


Magnetic resonance imaging (MRI) of the abdomen has been of limited clinical value because of long examination times, motion artifacts, and lack of suitable contrast agents [1–7]. Echo-planar MRI (EPI) and its derivatives have been developed to provide ultrafast imaging capability thus eliminating motion-related volume-averaging and phase-encoding artifacts (Fig. 1) combined with the acquisition of purely T2-weighted images using single-excitation techniques (TR = ∞) [8–19]. Major disadvantages in the past have been the need for specifically designed systems, suboptimal resolution (64×64 or 64×128), narrow magnet bores, limited multi-slice capability, and restricted slice orientation [20–23]. Limitations due to poor signal-to-noise ratio (SNR) have encouraged a trend from low-field MR systems to middle- or high-field MR systems [1, 10, 20, 24–26]. EPI is currently being prepared for installation into clinical MR systems by various manufactures [1, 9, 20, 24] because recent technical advances provide multi-slice capability, almost free-slice orientation, anatomical resolution, and sufficient SNR values [1, 27, 28]. EPI and its derivatives can be performed on conventional scanners, and a wide spectrum of pulse sequences is available [14, 15, 17–19, 29]. The purpose of this chapter is to describe the potential clinical applications of abdominal EPI.


Null Point Conventional Magnetic Resonance Imaging Focal Liver Lesion Gadopentetate Dimeglumine Oral Contrast Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cohen MS, Weisskoff RM (1991) Ultra-fast imaging. Magn Reson Imaging 9:1–37PubMedCrossRefGoogle Scholar
  2. 2.
    Saini S, Modic MT, Hamm B, Hahn PF (1991) Advances in contrast-enhanced MR imaging. AJR 156:235–254Google Scholar
  3. 3.
    Mitchell DG, Vinitski S, Saponaro S, Tasciyan T, Burk DL, Rifkin MD (1991) Liver and pancreas: improved spin-echo T1 contrast by shorter echo time and fat suppression at 1.5T. Radiology 178:67–71PubMedGoogle Scholar
  4. 4.
    Mitchell DG (1991) Rapid-acquisition spin-echo MR imaging of the liver: a critical view. Radiology 179:609–612PubMedGoogle Scholar
  5. 5.
    Mirowitz SA, Lee JKT (1991) Optimizing MR imaging of the abdomen: the case for rapid acquisition spin-echo MR imaging. Radiology 179:612–614PubMedGoogle Scholar
  6. 6.
    Brasch RC (1992) New directions in the development of MR imaging contrast media. Radiology 183:1–11PubMedGoogle Scholar
  7. 7.
    Patten RM, Moss AA, Fenton TA, Elliot S (1992) OMR, a positive bowel contrast agent for abdominal and pelvic MR imaging: safety and imaging characteristics. JMRI 2:25–34PubMedCrossRefGoogle Scholar
  8. 8.
    Mansfield P, Maudsley AA (1977) Planar spin imaging by NMR. J Magn Reson 27:101–107CrossRefGoogle Scholar
  9. 9.
    Pykett IL, Rzedzian RR (1987) Instant images of the body by magnetic resonance. Magn Reson Med 5:563–571PubMedCrossRefGoogle Scholar
  10. 10.
    Stehling MJ, Charnley RM, Blamire AM et al (1990) Ultrafast magnetic resonance scanning of the liver with echo-planar imaging. Br J Radiol 63:430PubMedCrossRefGoogle Scholar
  11. 11.
    Haase A (1990) Snapshot FLASH MRI: application to T1, T2, and chemical-shift imaging. Magn Reson Med 13:77–89PubMedCrossRefGoogle Scholar
  12. 12.
    Edelman RR, Wallner B, Singer A, Atkinson DJ, Saini S (1990) Segmented turboFlash: method for breath-hold MR imaging of the liver with flexible contrast. Radiology 177:515–521PubMedGoogle Scholar
  13. 13.
    Mirowitz SA, Lee JKT, Brown JJ, Eilenberg SS, Heiken JP, Perman WH (1990) Rapid acquisition spin-echo (RASE) MR imaging: a new technique for reduction of artifacts and acquisition time. Radiology 175:131–135PubMedGoogle Scholar
  14. 14.
    Feinberg D, Oshio K (1991) GRASE (gradient- and spin-echo) MR imaging: new fast clinical imaging technique. Radiology 181:280–293Google Scholar
  15. 15.
    Oshio K, Feinberg D (1991) GRASE (gradient- and spin-echo): a novel fast MR imaging technique. Magn Reson Med 20:344–349PubMedCrossRefGoogle Scholar
  16. 16.
    Wehrli FW (1991) Fast-scan magnetic resonance: principles and applications. Raven Press, New YorkGoogle Scholar
  17. 17.
    Melki PS, Jolesz FA, Mulkern RV (1992) Partial RF echo-planar imaging with the FAISE method II. Contrast equivalence with spin-echo-sequences. Magn Reson Med 26:342–354PubMedCrossRefGoogle Scholar
  18. 18.
    Melki PS, Jolesz FA, Mulkern RV (1992) Partial RF echo-planar imaging with the FAISE method I. Experimental and theoretical assessment of artifact. Magn Reson Med 26:328–341PubMedCrossRefGoogle Scholar
  19. 19.
    Kiefer B, Hausmann R (1993) Turbo-gradient-spin echo: technique, implementation and comparison to turbo-spin-echo-imaging. 8th European congress of radiology, Vienna, p 186Google Scholar
  20. 20.
    Rzedzian RR, Pykett IL (1987) Instant images of the body by magnetic resonance. Magn Reson Med 5:563–571PubMedCrossRefGoogle Scholar
  21. 21.
    Crooks LE, Arakawa M, Hylton NM et al (1988) Echo-planar pediatric imager. Radiology 166:157–163PubMedGoogle Scholar
  22. 22.
    Saini S, Stark DD, Rzedzian RR et al (1989) Forty-millisecond MR imaging of the abdomen at 2.0 T. Radiology 173:111–116PubMedGoogle Scholar
  23. 23.
    Stehling MJ, Howseman AM, Ordidge RJ et al (1989) Whole-body echo-planar MR imaging at 0.5 T. Radiology 170:257–263PubMedGoogle Scholar
  24. 24.
    Mansfield P (1977) Multi-planar image formation using NMR spin echoes. J Phys (Solid State Phys) C10:L55–58CrossRefGoogle Scholar
  25. 25.
    Ordidge RJ, Howseman A, Coxon R et al (1989) Snapshot imaging at 0.5 T using echo-planar techniques. Magn Reson Med 10:227–240PubMedCrossRefGoogle Scholar
  26. 26.
    Mansfield P, Coxon R, Glover P, Bowtell R (1993) High resolution echo-planar imaging at 3.0 T. SMRM, 12th annual meeting, New York, p 480Google Scholar
  27. 27.
    Fahrzaneh F, Riederer SJ (1988) Hybrid imaging with use of gradient-recalled echoes (abstract). Radiology 169 (P):379Google Scholar
  28. 28.
    Weisskoff RM, Cohen MS, Rzedzian RR (1993) Nonaxial whole-body instant imaging. Magn Reson Med 29:796–803PubMedCrossRefGoogle Scholar
  29. 29.
    Butts K, Riederer SJ, Ehman RL, Felmlee JP, Grimm RC (1993) Echo-planar imaging of the liver with a standard MR imaging system. Radiology 189:259–264PubMedGoogle Scholar
  30. 30.
    Feinberg D, Hale JD, Watts JC, Kauffman L, Mark A (1986) Halving MR imaging time by conjugation: demonstration at 3.5 kG. Radiology 161:527–531PubMedGoogle Scholar
  31. 31.
    Hennig J, Nauerth A, Friedburg H (1986) RARE imaging: a fast method for clinical MR. Magn Reson Med 3:823–833PubMedCrossRefGoogle Scholar
  32. 32.
    Reimer P, Saini S, Hahn PF, Brady TJ, Cohen MS (1994) Clinical application of abdominal echoplanar imaging: Optimization using a retrofitted EPI system. JCAT 18:673–679Google Scholar
  33. 33.
    Stark DD, Wittenberg J, Butch RJ, Ferrucci JT (1987) Hepatic metastases: randomized, controlled comparison of detection with MR imaging and CT. Radiology 165:399–406PubMedGoogle Scholar
  34. 34.
    Nelson RC, Chezmar JL, Sugarbaker PH, Bernardino ME (1989) Hepatic tumors: comparison of CT during arterial portography, delayed CT, and MR imaging for preoperative evaluation. Radiology 172:27–34PubMedGoogle Scholar
  35. 35.
    Heiken JP, Weyman PJ, Lee JKT et al (1989) Detection of focal hepatic masses: prospective evaluation with CT, delayed CT, CT during arterial portography, and MR imaging. Radiology 171:47–51PubMedGoogle Scholar
  36. 36.
    Rummeny EJ, Wernecke K, Saini S et al (1992) Comparison between high-field-strength MR imaging and CT for screening of hepatic metastases: a receiver operating characteristics analysis. Radiology 182:879–886PubMedGoogle Scholar
  37. 37.
    Nelson RC, Thompson GH, Chezmar JL, Harned II RK, Fernandez MP (1992) CT during arterial portography: diagnostic pitfalls. Radiographics 12:705–718PubMedGoogle Scholar
  38. 38.
    Oshio K, Jolesz FA (1993) Fast MRI by creating multiple spin echoes in a CPMG sequence. Magn Reson Med 30:251–255PubMedCrossRefGoogle Scholar
  39. 39.
    Jakob PM, Haase A (1992) Scan time reduction in snapshot FLASH MRI. Magn Reson Med 24:391–396PubMedCrossRefGoogle Scholar
  40. 40.
    Semelka RC, Simm FC, Recht M, Deimling M, Lenz G, Laub GA (1991) T1-weighted sequences for MR imaging of the liver: comparison of three techniques for single-breath whole-volume acquisition at 1.0 and 1.5 T. Radiology 180:629–635PubMedGoogle Scholar
  41. 41.
    Butts RK, Farzaneh F, Riederer SJ, Rydberg JN, Grimm RC (1991) T2-weighted spin-echo pulse with variable repetition and echo times for reduction of MR image acquisition time. Radiology 180:551–556PubMedGoogle Scholar
  42. 42.
    Holsinger-Bampton AE, Riederer SJ, Campeau NG, Ehman RL, Johnson CD (1991) T1-weighted snapshot gradient-echo MR imaging of the abdomen. Radiology 181:25–32PubMedGoogle Scholar
  43. 43.
    Semelka RC, Shoenut P, Kroeker MA et al (1992) Focal liver disease: comparison of dynamic contrast-enhanced CT and T2-weighted fat suppressed, FLASH, and dynamic gadolinium-enhanced MR imaging at 1.5 T. Radiology 184:687–694PubMedGoogle Scholar
  44. 44.
    Pauly J, Spielman D, Macovski A (1993) Echo-planar spin-echo and inversion pulses. Magn Reson Med 29:776–782PubMedCrossRefGoogle Scholar
  45. 45.
    Saini S, Hahn PF, Reimer P, Nadeau KA, Cohen MS, Mueller PR (1991) Ultrafast MR Imaging of the liver: analysis of pulse sequence performance. Society of Magnetic Resonance in Medicine, 10th annual scientific meeting and exhibition, San Francisco, USA, p 24Google Scholar
  46. 46.
    Reimer P, Saini S, Hahn PF, Cohen MS, Brady TJ (1993) Klinische Anwendung der echoplanaren MR-Tomographie in der Detektion fokaler Leberläsionen: Ergebnisse einer quantitativen Untersuchung. RÖFO 159:16–21PubMedGoogle Scholar
  47. 47.
    Stehling MJ, Ordidge RJ, Coxon R, Mansfield P (1990) Inversion-recovery echo planar imaging (IR-EPI) at 0.5 T. Magn Reson Med 13:514–517PubMedCrossRefGoogle Scholar
  48. 48.
    Bydder GM, Young IR (1985) MR Imaging: clinical use of the inversion recovery sequence. JCAT 9:659–675Google Scholar
  49. 49.
    Reimer P, Ladebeck R, Rummney EJ, Repp H, Peters PE, Schmitt F (1994) Detection of focal liver lesions with EPI: preliminary clinical results with CT comparison. MRM 32:733–737Google Scholar
  50. 50.
    Bruder H, Fischer H, Reinfelder H-E, Schmitt F (1992) Image reconstruction for echo-planar imaging with nonequidistant k-space sampling. Magn Reson Med 23:311–323PubMedCrossRefGoogle Scholar
  51. 51.
    Bampton AEH, Riederer SJ (1992) Improved efficiency in 2DFT magnetization-prepared rapid gradient echo imaging: application to abdominal imaging. Magn Reson Med 25:195–203PubMedCrossRefGoogle Scholar
  52. 52.
    Ortendahl AD, Kaufman L, Kramer DM (1992) Analysis of hybrid imaging techniques. Magn Reson Med 26:155–173PubMedCrossRefGoogle Scholar
  53. 53.
    Constable RT, Gore JC (1992) The loss of small objects in variable TE imaging: implications for FSE, RARE, and EPI. Magn Reson Med 28:9–24PubMedCrossRefGoogle Scholar
  54. 54.
    Karhunen PJ (1986) Benign hepatic tumours and tumour like conditions in men. J Clin Pathol 39:183–189PubMedCrossRefGoogle Scholar
  55. 55.
    Wittenberg J, Stark DD, Forman BH et al (1988) Differentiation of hepatic metastases from hepatic hemangiomas and cysts by using MR imaging. AJR 151:79–84PubMedGoogle Scholar
  56. 56.
    Ohtomo K, Itai Y, Furui S, Yashiro N, Yoshikawa K, Iio M (1985) Hepatic tumors: differentiation by transverse relaxation time (T2) of magnetic resonance imaging. Radiology 155:421–423PubMedGoogle Scholar
  57. 57.
    Egglin TK, Rummeny EJ, Stark DD, Wittenberg J, Saini S, Ferrucci JT (1990) Hepatic tumors: quantitative tissue characterization with MR imaging. Radiology 155:55–59Google Scholar
  58. 58.
    Itoh K, Saini S, Hahn PF, Inam N, Ferrucci JT (1990) Differentiation between small hemangiomas and metastases on MR images: importance of size-specific quantitative criteria. AJR 155:61–66PubMedGoogle Scholar
  59. 59.
    Goldberg MA, Hahn PF, Saini S et al (1993) Value of T1 and T2 relaxation times from echoplanar MR imaging in the characterization of focal hepatic lesions. AJR 160:1011–1017PubMedGoogle Scholar
  60. 60.
    Goldberg MA, Hahn PF, Saini S, Egglin TK, Mueller PR (1991) Differentiation between hemangiomas and metastases of the liver with ultrafast MR imaging: preliminary results with T2 calculations. AJR 157:727–730PubMedGoogle Scholar
  61. 61.
    Reimer P, Saini S, Tombach B et al (1996) Echoplanar imaging (EPI) des Abdomens. Radiologe (in press)Google Scholar
  62. 62.
    Hamm B, Fischer E, Taupitz M (1990) Differentiation of hepatic hemangiomas from metastases by dynamic contrast-enhanced MR imaging. J Comput Assist Tomogr 14:205–216PubMedCrossRefGoogle Scholar
  63. 63.
    Saini S, Hahn PF, Cohen MS, Reimer P, Campbell T, Brady TJ (1993) Dynamic gadolinium-enhanced echo-planar MR Imaging of the liver. RSNA, Chicago, p 116Google Scholar
  64. 64.
    Chezmar JL, Rumancik WM, Megibow AJ, Hulnik DH, Nelson RC, Bernardino ME (1988) Liver and abdominal screening in patients with cancer: CT versus MR imaging. Radiology 168:43–47PubMedGoogle Scholar
  65. 65.
    Ehman RL, McNamara MT, Brasch RC, Felmlee JP, Gray JE, Higgins CB (1986) Influence of physiologic motion on the appearance of MR images. Radiology 159:777–782PubMedGoogle Scholar
  66. 66.
    Henkelman RM, Bronskill MJ (1987) Artifacts in magnetic resonance imaging. Rev Magn Reson Med 2:1–126Google Scholar
  67. 67.
    Hahn PF, Saini S, Cohen MS, Goldberg M, Reimer P, Mueller PR (1992) An aqueous gastrointestinal contrast agent for use in echo-planar MR imaging. Magn Reson Med 25:380–383PubMedCrossRefGoogle Scholar
  68. 68.
    Stehling MJ, Evans DF, Lamont G et al (1989) Gastrointestinal tract: dynamic MR studies with echo-planar imaging. Radiology 171:41–46PubMedGoogle Scholar
  69. 69.
    Reimer P, Saini S, Hahn PF, Mueller PR, Brady TJ, Cohen MS (1992) Techniques for high-resolution echoplanar MR imaging of the pancreas. Radiology 182:175–179PubMedGoogle Scholar
  70. 70.
    Hahn PF, Stark DD, Lewis JM et al (1989) First clinical trial of a new superparamagnetic iron oxide for use as an oral superparamagnetic contrast agent in MR imaging. Radiology 175:695–700Google Scholar
  71. 71.
    Tscholakoff D, Hricak H, Thoeni R, Winkler ML, Margulis AR (1987) MR imaging in the diagnosis of pancreatic disease. AJR 148:703–709PubMedGoogle Scholar
  72. 72.
    Steiner E, Stark DD, Hahn PF et al (1989) Imaging of pancreatic neoplasms: comparison of MR and CT. AJR 151:487–491Google Scholar
  73. 73.
    Semelka RC, Ascher SM (1993) MR imaging of the pancreas. Radiology 188:593–602PubMedGoogle Scholar
  74. 74.
    Müller MF, Prasad PV, Siewert B et al (1993) Abdominal diffusion mapping using a whole body echo planar system. 12th annual meeting, New York, p 45Google Scholar
  75. 75.
    Butts RK, Riederer SJ (1992) Analysis of flow effects in echo-planar imaging. JMRI 2:285PubMedCrossRefGoogle Scholar
  76. 76.
    Goldberg MA, Yucel EK, Saini S, Hahn PF, Kaufman JA, Cohen MS (1993) MR angiography of the portal and hepatic venous systems: preliminary experience with echoplanar Imaging. AJR 160:35–40PubMedGoogle Scholar
  77. 77.
    Crawley AM, Cohen MS, Yucel EK, Poncelet B, Brady TJ (1991) Single-shot magnetic resonance imaging: applications to angiography. Cardiovasc Intervent Radiol 15:32–42Google Scholar
  78. 78.
    Firmin D, Klipstein R, Hounsfield G, Paley M, Longmore D (1989) Echo planar high resolution flow velocity mapping. Magn Reson Med 12:316–327PubMedCrossRefGoogle Scholar
  79. 79.
    Feinberg D, Jakab P (1990) Tissue perfusion in humans studied by Fourier velocity distribution, line scan, and echo planar imaging. Magn Reson Med 16:280–293PubMedCrossRefGoogle Scholar
  80. 80.
    Saini S, Stark DD, Brady TJ, Wittenberg J, Ferrucci JT (1986) Dynamic spin-echo MRI of liver cancer using gadolinium-DTPA: animal investigation. AJR 147:357–362PubMedGoogle Scholar
  81. 81.
    Hamm B, Wolf KJ, Felix R (1987) Conventional and rapid MR imaging of the liver with GD-DTPA. Radiology 164:313–320PubMedGoogle Scholar
  82. 82.
    Edelman RR, Siegel JB, Singer A, Dupuis K, Longmaid HE (1989) Dynamic MR imaging of the liver with Gd-DTPA: initial clinical results. AJR 153:1213–1219PubMedGoogle Scholar
  83. 83.
    Villringer A, Rosen BR, Belliveau JW et al (1988) Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med 6:164–174PubMedCrossRefGoogle Scholar
  84. 84.
    Fisel CR, Ackerman JL, Buxton RB et al (1991) MR contrast due to microscopically heterogeneous magnetic susceptibility: numerical simulations and applications to cerebral physiology. Magn Res Med 17:336–347CrossRefGoogle Scholar
  85. 85.
    White DL, Aicher KP, Tzika AA, Kucharzyk J, Engelstad BL, Moseley ME (1992) Iron-dextran as a magnetic susceptibility contrast agent: flow-related contrast effects in the T2-weighted spin-echo MRI of normal rat and cat brain. Mag Reson Med 24:14–28CrossRefGoogle Scholar
  86. 86.
    Reimer P, Saini S, Kwong KK, Cohen MS, Weissleder R, Brady TJ (1994) Dynamic gadopentetate dimeglumine enhanced echoplanar MR Imaging of the liver: effect of pulse sequence and dose on liver enhancement. JMRI 4:1–5CrossRefGoogle Scholar
  87. 87.
    Greif WL, Buxton R, Lauffer RB, Saini S, Vincent AC (1985) Optimization of pulse sequences for imaging of hepato-biliary contrast agents. Radiology 157:461–466PubMedGoogle Scholar
  88. 88.
    Rummeny EJ, Stober U, Adolph J et al (1991) turbo-FLASH MR imaging: perfusion patterns of hepatic tumors. ARRS, Boston May 1991, p 203Google Scholar
  89. 89.
    Weissleder R, Elizondo G, Wittenberg J, Rabito C, Bengele HH, Josephson L (1990) Ultra-small superparamagnetic iron oxide (USPIO): characterization of a new class of MR contrast agents. Radiology 175:489–493PubMedGoogle Scholar
  90. 90.
    Lauffer RB, Vincent AC, Padmanabhan S et al (1987) Hepatobiliary MR contrast agents: 5-substituted Iron-EHPG derivatives. Magn Res Med 4:582–590CrossRefGoogle Scholar
  91. 91.
    Reimer P, Weissleder R, Lee AS, Wittenberg J, Brady TJ (1990) Receptor imaging: application to MR imaging of liver cancer. Radiology 177:729–734PubMedGoogle Scholar
  92. 92.
    Reimer P, Kwong KK, Weisskoff R, Cohen MS, Brady TJ, Weissleder R (1992) Dynamic signal changes in liver with superparamagnetic MR contrast agents. JMRI 2:177–181PubMedCrossRefGoogle Scholar
  93. 93.
    Moss AA, Kressel HY, Korobkin M, Goldberg HI, Rohlfing BM, Brasch RC (1978) The effect of gastrografin and glucagon on CT scanning of the pancreas: a blind clinical trial. Radiology 126:711PubMedGoogle Scholar
  94. 94.
    Hahn PF, Stark DD, Saini S, Lewis JM, Wittenberg J, Ferrucci JT (1987) Ferrite particles for bowel contrast in MR imaging: design issues and feasibility studies. Radiology 164:37–41PubMedGoogle Scholar
  95. 95.
    Laniado M, Kornmesser W, Hamm B, Clauss W, Weinmann HJ, Felix R (1988) MR imaging of the gastrointestinal tract: value of GD-DTPA. AJR 150:817–821PubMedGoogle Scholar
  96. 96.
    Kaminsky S, Laniado M, Gogoll M et al (1991) Gadopentate dimeglumine as a bowel contrast agent: Safety and efficacy. Radiology 178:503–508PubMedGoogle Scholar
  97. 97.
    Ros PR, Steinman RM, Torres GM et al (1991) The value of barium as a gastrointestinal contrast agent in MR imaging: a comparison study in normal volunteers. AJR 157:761–767PubMedGoogle Scholar
  98. 98.
    Reimer P, Schmitt F, Ralf Ladebeck R, Graessner J, Schaffer B (1993) Evaluation of potential gastrointestinal contrast agents for echoplanar MR imaging. EJR 3:487–492Google Scholar
  99. 99.
    Weissleder R, Bogdanov A, Papisov M (1992) Drug targeting in magnetic resonance imaging. Magn Reson Q 8:55–63PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • P. Reimer
  • R. Ladebeck

There are no affiliations available

Personalised recommendations