Skip to main content

Basic Considerations and Definitions in Bone Densitometry

  • Chapter

Abstract

Bone densitometry has become an established tool for diagnosing and following up patients with disorders affecting the bone mineralization. The development of bone densitometry has certainly been driven by the need to overcome the inherent shortcomings of plain radiography for assessing bone density [17, 79]. Several studies show that the agreement between radiologists for the assessment of the bone mineral status based on radiographs of the spine is only moderate [30, 66]. This maybe even more a problem when one tries to assess changes in bone density based on conventional radiography. Semiquantitative methods such as Saville’s, Singh’s, or Jhamaria’s osteoporosis indices are of limited value, and some quantitative scores such as the Barnett-Nordin index at the spine do not really demonstrate a good correlation with bone density [6, 67, 68,112,114]. Therefore a number of methods for quantitatively assessing a person’s bone status to overcome the imperfections of plain radiography have been developed. With these methods a completely new terminology has evolved including various acronyms and definitions that are in part specific to some methods, or that are used for diagnostic purposes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albright F (1947) Osteoporosis. Ann Intern Med 27: 861–882

    CAS  Google Scholar 

  2. Alenfeld F, Wüster C, Goetz M, Beck C, Ziegler R (1995) Diagnostic value of ultrasound measurements of bone mineral density on the metacarpals in healthy and osteoporotic subjects. Bone 16: 147S

    Google Scholar 

  3. American Heritage Dictionary (1985) Houghton Mifflin, Boston

    Google Scholar 

  4. Andresen R, Radmer S, Banzer D, Felsenberg D, Wolf KJ (1994) Quantitative Knochenmineralgehaltsbestimmung (QCT). Systemvergleich baugleicher Computertomographen. Rofo Fortschr Geb Röntgenstr Neuen Bildgeb Verfahr 16o: 260 - 265

    Google Scholar 

  5. Antich PP, Pak CYC, Gonzales J, Anderson J, Sakhaee K, Rubin C (1993) Measurement of intrinsic bone quality in vivo by reflection ultrasound: correction of impaired quality with slow-release sodium fluoride and calcium citrate. J Bone Miner Res 8: 301–311

    PubMed  CAS  Google Scholar 

  6. Barnett E, Nordin BEC (1960) The radiological diagnosis of osteoporosis: a new approach. Clin Radio111: 166–174

    Google Scholar 

  7. Bauer DC, Glüer CC, Genant HK, Stone K (1995) Quantitative ultrasound and vertebral fracture in post menopausal women. J Bone Miner Res 10: 353–358

    PubMed  CAS  Google Scholar 

  8. Black D, Bauer DC, Lu Y, Tabor H, Genant HK, Cummings SR (1995) Should BMD be measured at multiple sites to predict fracture risk in elderly women? J Bone Miner Res 10 [Suppl 11:S14o

    Google Scholar 

  9. Black D, Cummings SR, Genant HK, Nevitt MC, Palermo L, Browner W (1992) Axial and appendicular bone density predict fractures in older women. J Bone Miner Res 7: 633–638

    PubMed  CAS  Google Scholar 

  10. Black DM, Palermo L, Genant HK, Cummings SR (1996) Four reasons to avoid the use of BMD T-scores in treatment decisions for osteoporosis. J Bone Miner Res ii: S118

    Google Scholar 

  11. Boonen S, Cheng XG, Nijs J, Nicholson PHF, Verbeke G, Lesaffre E, Aerssens J, Dequeker J (1997) Factors associated with cortical and trabecular bone loss as quantified by peripheral conputed tomography (pQCT) at the ultradistal radius in aging women. Calcif Tissue Int 60: 164–170

    PubMed  CAS  Google Scholar 

  12. Carter DR, Bouxsein ML, Marcus R (1992) New approaches for interpreting projected bone densitometry data. J Bone Miner Res 7: 137–145

    PubMed  CAS  Google Scholar 

  13. Cummings SR, Black D (1986) Should perimenopausal women be screened for osteoporosis? Ann Intern Med 104: 817–823

    PubMed  CAS  Google Scholar 

  14. Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K, Genant HK, Palermo L, Scott J, Vogt TM (1993) Bone density at various sites for prediction of hip fractures. Lancet 341: 72–75

    PubMed  CAS  Google Scholar 

  15. Cummings SR, Marcus R, Palermo L, Ensrud KE, Genant HK (1994) Does estimating volumetric bone density of the femoral neck improve the prediction of hip fracture? A prospective study. J Bone Miner Res 9: 1429–1432

    CAS  Google Scholar 

  16. Cummings SR, Nevitt MC, Browner WS, Stone K, Fox K, Ensrud K, Cauley J, Black D, Vogt T (1995) Risk factors for hip fractures in white women. N Engl J Med 332:767-773

    PubMed  CAS  Google Scholar 

  17. Doyle FH, Gutteridge DH, Joplin GF, Fraser R (1967) An assessment of radiological criteria used in the study of spinal osteoporosis. Br J Radiol 40: 241–250

    PubMed  CAS  Google Scholar 

  18. Eiken P, Kolthoff N, Bärenholdt O, Hermansen F, Nielsen SP (1994) Switching from DXA pencil-beam to fan-beam. II: Studies in vivo. Bone 15: 671–676

    Google Scholar 

  19. Etherington J, Harris PA, Nandra D, Hart DJ, Wolman RL, Doyle DV, Spector TD (1996) The effect of weight bearing exercise on bone mineral density: a study of female ex-elite athletes and the general population. J Bone Miner Res 11: 1333–1338

    PubMed  CAS  Google Scholar 

  20. Faulkner KG, Cummings SR, Glüer CC, Palermo L, Black D, Genant HK (1993) Simple measurement of femoral geometry predicts hip fracture: the study of osteopotic fractures. J Bone Miner Res 8: 1211–1217

    PubMed  CAS  Google Scholar 

  21. Faulkner KG, Glüer CC, Grampp S, Genant HK (1993) Cross calibration of liquid and solid QCT calibration standards: corrections to the UCSF normative data. Osteoporosis Int 3: 36–42

    CAS  Google Scholar 

  22. Faulkner KG, McClung MR (1995) Quality control of DXA instruments in multicenter trials. Osteoporos Int 5: 218–227

    PubMed  CAS  Google Scholar 

  23. Faulkner KG, McClung MR, Coleman LJ, Kingston-Sandahl E (1994) Quantitative ultrasound of the heel: correlation with densitometric measurements at different skeletal sites. Osteoporosis Int 4: 42–47

    CAS  Google Scholar 

  24. Felsenberg D, Kalender WA, Banzer D, Schmilinsky G, Heyse M, Fischer E, Schneider U (1988) Quantitative computertomographische Knochenmineralgehaltbestimmung. Fortschr Rontgenstr 148: 85–89

    Google Scholar 

  25. Frost HM (1964) Dynamics of bone remodelling. In: Frost HM (ed) Bone bio-dynamics. Little Brown, Boston, pp 315–334

    Google Scholar 

  26. Funck C, Wüster C, Alenfeld FE, Pereira-Lima JFS, Fritz T, Meeder PJ, Götz M, Ziegler R (1996) Ultrasound velocity of the tibia in normal German women and hip fracture patients. Calcif Tissue Int 58: 390–394

    PubMed  CAS  Google Scholar 

  27. Gärdsell P, Johnell O,Nilsson BE (1990) The predictive value of forearm bone mineral content measurements in men. Bone 11: 229–232

    Google Scholar 

  28. Gärdsell P, Johnell O, Nilsson BE (1991) The predictive value of bone loss for fragility fractures in women: a longitudinal study over 15 years. Calcif Tissue Int 49: 90–94

    PubMed  Google Scholar 

  29. Gärdsell P, Johnell O, Nilsson BE, Gullberg B (1993) Predicting various fragility fractures in women by forearm bone densitometry: a follow-up study. Cal-cif Tissue Int 52348–353

    Google Scholar 

  30. Garton MJ, Robertson EM, Gilbert FJ, Gomersall L, Reid DM (1994) Can radiologists detect osteopenia on plain radiographs? Clin Radiol 49: 118–122

    Google Scholar 

  31. Genant HK, Block JE, Steiger P, Glüer CC, Ettinger B, Harris ST (1989) Appropriate use of bone densitometry. Radiology 170: 817–822

    PubMed  CAS  Google Scholar 

  32. Genant HK, Boyd DP (1977) Quantitative bone mineral analysis using dual energy computed tomography. Invest Radio112:545–551

    Google Scholar 

  33. Genant HK, Cann CE, Ettinger B, Gordan GS (1982) Quantitative computed tomography of vertebral spongiosa: a sensitive method for detecting early bone loss after oophorectomy. Ann Intern Med 97: 699–705

    PubMed  CAS  Google Scholar 

  34. Genant HK, Glüer CC, Faulkner KG, Majumdar S, Harris ST, Engelke K, van KC (1992) Acronyms in bone densitometry. Radiology 184: 878

    PubMed  CAS  Google Scholar 

  35. Genant HK, Grampp S, Gluer CC, Faulkner KG, Jergas M, Engelke K, Hagiwara S, van Kuijk C (1994) Universal standardization for dual X-ray absorptiometry: patient and phantom cross-calibration results. J Bone Miner Res 9: 1503–1514

    PubMed  CAS  Google Scholar 

  36. Genant HK, Lu Y, Mathur AK, Fuerst TP, Cummings SR (1996) Classification based on DXA measurements for assessing the risk of hip fractures. J Bone Miner Res 11: S120

    Google Scholar 

  37. Gluer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5: 262–270

    PubMed  CAS  Google Scholar 

  38. Glüer CC, Blunt B, Engelke K, Jergas M, Grampp S, Genant HK (1994) “Characteristic follow-up time” - a new concept for standardized characterization of a technique’s ability to monitor longitudinal changes. Bone Miner 25 [Suppl 2]:S40

    Google Scholar 

  39. Gluer CC, Cummings SR, Bauer DC, Stone K, Pressman A, Mathur A, Genant HK (1996) Osteoporosis: association of recent fractures with quantitative ultrasound findings. Radiology 199: 725–732

    PubMed  CAS  Google Scholar 

  40. Gluer CC, Engelke K, Jergas M, Hagiwara S, Grampp S, Genant HK (1993) Changes in calibration standards for quantitative computed tomography: recommendations for clinical practice. Osteoporosis Int 3: 286–287

    CAS  Google Scholar 

  41. Gluer CC, Faulkner KG, Estilo MJ, Engelke K, Rosin J, Genant HK (1993) Quality assurance for bone densitometry research studies: concept and impact. Osteoporosis Int 3: 227–235

    CAS  Google Scholar 

  42. Gluer CC, Genant HK (1989) Impact of marrow fat on accuracy of quantitative CT. J Comput Assist Tomogr 13: 1023–1035

    PubMed  CAS  Google Scholar 

  43. Gluer CC, Reiser UJ, Davis CA, Rutt BK, Genant HK (1988) Vertebral mineral determination by quantitative computed tomography (QCT): accuracy of single and dual energy measurements. J Comput Assist Tomogr 12: 242–258

    PubMed  CAS  Google Scholar 

  44. Goodsitt MM (1992) Conversion relations for quantitative CT bone mineral density measured with solid and liquid calibration standards. Bone Miner 19: 145–158

    PubMed  CAS  Google Scholar 

  45. Guglielmi G, Giannantempo GM, Scillitani A, Chiodini I, Liuzzi A, Cammisa M (1996) Phalangeal QUS, QCT and DXA in healthy, postmenopausal and osteoporotic women. Osteoporosis Int 6: S207

    Google Scholar 

  46. Haapasalo H, Sievanen H, Kannus P, Heinonen A, Oja P,Vuori I (1996) Dimensions and estimated mechanical characteristics of the humerus after longterm tennis loading. J Bone Miner Res 11: 864–872

    PubMed  CAS  Google Scholar 

  47. Hans D, Dargent-Molina P, Schott AM, Seber JL, Cormier C, Kotzli PO, Del-mas PD, Pouilles JM (1996) Ultrasonographic heel measurements to predict hip fracture in the elderly. Lancet 348: 511–514

    PubMed  CAS  Google Scholar 

  48. Hans D, Fuerst T, Duboeuf F (1997) Quantitative ultrasound bone measurement. Eur Radiol 7: S43 - S50

    PubMed  Google Scholar 

  49. Hansen MA, Overgaard K, Riis BJ, Christiansen C (1991) Role of peak bone mass and bone loss in postmenopausal osteoporosis: 12 year study. BMJ 303: 961–964

    PubMed  CAS  Google Scholar 

  50. He Y-F, Davis JW, Ross PD,Wasnich RD (1993) Declining bone loss rate variability with increasing follow-up time. Bone Miner 21: 119–128

    PubMed  CAS  Google Scholar 

  51. He Y-F, Ross PD, Davis JW, Epstein RS, Vogel JM, Wasnich RD (1994) When should bone density measurements be repeated? Calcif Tissue Int 55: 243–248

    PubMed  CAS  Google Scholar 

  52. Heaney RP, Avioli LV, Chesnut III CH, Lappe J, Recker RR, Brandenburger GH (1995) Ultrasound velocity through bone predicts incident vertebral deformity. J Bone Miner Res 10:341-345

    Google Scholar 

  53. Heaney RP, Avioli LV, Chestnut CH, Lappe J, Recker RR, Brandburger GH (1989) Osteoporotic bone fragility: detection by ultrasound transmission velocity. JAMA 261: 2986–2990

    PubMed  CAS  Google Scholar 

  54. Heuck F, Schmidt E (1960) Die quantitative Bestimmung des Mineralgehaltes des Knochens aus dem Röntgenbild. Fortschr Rontgenstr 93: 523–554

    CAS  Google Scholar 

  55. Hosie CJ, Smith DA, Deacon AD, Langton CM (1987) Comparison of broadband ultrasonic attenuation of the os calcis and quantitative computed tomography of the distal radius. Clin Phys Physiol Meas 8: 303–308

    PubMed  CAS  Google Scholar 

  56. Huda W, Bissessur K (1990) Effective dose equivalents, HE, in diagnostic radiology. Med Phys 17: 998–1003

    Google Scholar 

  57. Huda W, Morin RL (1996) Patient doses in bone mineral densitometry. Br J Radiol 69: 422–425

    PubMed  CAS  Google Scholar 

  58. Hui SL, Slemenda CW, Carey MA, Johnston CC Jr (1995) Choosing between predictors of fractures. J Bone Miner Res 10: 1816–1822

    PubMed  CAS  Google Scholar 

  59. Hui SL, Slemenda CW, Johnston CC (1988) Age and bone mass as predictors of fracture in a prospective study. J Clin Invest 81: 1804–1809

    PubMed  CAS  Google Scholar 

  60. Hui SL, Slemenda CW, Johnston CC (1989) Baseline measurement of bone mass predicts fracture in white women. Ann Intern Med 111: 355–361

    PubMed  CAS  Google Scholar 

  61. ICRP (1977) Recommendations of the International Commission on Radiation Protection (ICRP). ICRP publication 26. Pergamon, Oxford

    Google Scholar 

  62. Jergas M, Breitenseher M, Gluer CC, Yu W, Genant HK (1995) Estimates of volumetric bone density from projectional measurements improve the discriminatory capability of dual X-ray absorptiometry. J Bone Miner Res 10: 1101–1110

    CAS  Google Scholar 

  63. Jergas M, Fuerst T, Grampp S, Uffmann M, Glüer CC, Genant HK (1995) Assessment of spinal osteoporosis with dual X-ray absorptiometry of the spine and femur. Radiology 197 (P):362

    Google Scholar 

  64. Jergas M, Grampp S, Hagiwara S, Lang P, Bendavid EJ, Genant HK (1993) Perspectives on bone densitometry: past /present/future. J Bone Miner Metab 11 [Supp11]:S7—S16

    Google Scholar 

  65. Jergas M, Köster 0 (1993) Ultraschallverfahren in der Diagnostik der Osteoporose. Ultraschall Med 14: 136–143

    Google Scholar 

  66. Jergas M, Uffmann M, Escher H, Glüer CC, Young KC, Grampp S, Köster O, Genant HK (1994) Interobserver variation in the detection of osteopenia by radiography and comparison with dual X-ray absorptiometry ( DXA) of the lumbar spine. Skeletal Radiol 23: 195–199

    Google Scholar 

  67. Jergas M, Uffmann M, Escher H, Schaffstein J, Nitzschke E, Köster 0 (1994) Visuelle Beurteilung konventioneller Röntgenaufnahmen and duale Röntgenabsorptiometrie in der Diagnostik der Osteoporose. Z Orthop Grenzgeb 132: 91–198

    CAS  Google Scholar 

  68. Jhamaria NL, Lal KB, Udawat M, Banerji P, Kabra SG (1983) The trabecular pattern of the calcaneum as an index of osteoporosis. J Bone Joint Surg Br 65: 195–198

    PubMed  CAS  Google Scholar 

  69. Jones PRM, Hardmann AE, Hudson A, Norgan NG (1991) Influence of brisk walking on the ultrasonic attenuation of the calcaneus in previously sedentary women aged 30–61 years. Calcif Tissue Int 49: 112–115

    PubMed  CAS  Google Scholar 

  70. Kalender WA (1992) Effective dose values in bone mineral measurements by photon absorptiometry and computed tomography. Osteoporosis Int 2: 82–87

    CAS  Google Scholar 

  71. Kalender WA (1992) A phantom for standardization and quality control in spinal bone mineral measurements by QCT and DXA: design considerations and specifications. Med Phys 19583–586

    Google Scholar 

  72. Kalender WA, Brestowsky H, Felsenberg D (1988) Bone mineral measurements: Automated determination of the midvertebral CT section. Radiolo-gy 168: 219–221

    Google Scholar 

  73. Kalender WA, Felsenberg D, Genant HK, Fischer M, Dequeker J, Reeve J (1995) The European Spine Phantom–a tool for standardization and quality control in spinal bone mineral measurements by DXA and QCT. Eur J Radiol 20: 83–92

    PubMed  CAS  Google Scholar 

  74. Kalender WA, Felsenberg D, Louis O, Lopez P, Klotz E, Osteaux M, Fraga J (1989) Reference values for trabecular and cortical vertebral bone density in single and dual-energy quantitative computed tomography. Eur J Radiol 9: 75–80

    PubMed  CAS  Google Scholar 

  75. Kanis JA, Melton III LJ, Christiansen C, Johnston CC, Khaltaev N (1994) The diagnosis of osteoporosis. J Bone Miner Res 9: 1137–1141

    Google Scholar 

  76. Kanis JA, WHO Study Group (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. Osteoporosis Int 4: 368–381

    Google Scholar 

  77. Kaufman JJ, Einhorn TA (1993) Perspectives: ultrasound assessment of bone. Osteoporosis Int 8:517-525

    Google Scholar 

  78. Kotowicz MA, Melton LJ III, Cooper C, Atkinson EJ, O’Fallon WM, Riggs LB (1994) Risk of hip fracture in women with vertebral fracture. J Bone Miner Res 9: 599–605

    Google Scholar 

  79. Lachmann E, Whelan M (1936) The roentgen diagnosis of osteoporosis and its limitations. Radiology 26: 165–177

    Google Scholar 

  80. Lai K, Rencken M, Drinkwater BL, Chesnut CH III (1993) Site of bone density measurement may affect therapy decision. Calcif Tissue Int 53: 225–228

    Google Scholar 

  81. Langton CM, Palmer SB, Porter RW (1984) The measurement of broadband ultrasound attenuation in cancellous bone. Eng Med 13: 89–91

    PubMed  CAS  Google Scholar 

  82. Larnach TA, Boyd SJ, Smart RC, Butler SP, Rohl PG, Diamond TH (1992) Reproducibility of lateral spine scans using dual energy X-ray absorptiometry. Calcif Tissue Int 51: 255–258

    PubMed  CAS  Google Scholar 

  83. Laskey MA, Flaxman ME, Barber RW, Trafford S, Hayball MP, Lyttle KD, Crisp AJ, Compston JE (1991) Comparative performance in vitro and in vivo of Lunar DPX and Hologic QDR-i000 dual energy X-ray absorptiometers. Br J Radiol 64: 1023–1029

    PubMed  CAS  Google Scholar 

  84. Laugier P, Giat P, Berger G (1994) New ultrasonic methods of quantitative assessment of bone status. Eur J Ultrasound 1: 23–38

    Google Scholar 

  85. Laval-Jeantet AM, Roger B, Bouysse S, Bergot C, Mazess RB (1986) Influence of vertebral fat content on quantitative CT density. Radiology 159: 463–466

    PubMed  CAS  Google Scholar 

  86. Lehmann R, Wapniarz M, Randerath O, Kvasnicka HM, John W, Reincke M, Kutnar S, Klein K, Allolio B (1995) Dual-energy X-ray absorptiometry at the lumbar spine in German men and women: a cross-sectional study. Calcif Tissue Int 56: 350–354

    PubMed  CAS  Google Scholar 

  87. Looker AC, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP, Johnston CC, Lindsay RL (1995) Proximal femur bone mineral levels of US adults. Osteoporosis Int 5: 389–409

    CAS  Google Scholar 

  88. Mack PB, O’Brian AT, Smith JM, Bauman AW (1939) A method for estimating degree of mineralization of bones from tracings of roentgenograms Science 89: 467

    CAS  Google Scholar 

  89. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312: 1254–1259

    PubMed  CAS  Google Scholar 

  90. Mazess R, Chesnut III CH, McClung M, Genant HK (1992) Enhanced precision with dual-energy X-ray absorptiometry. Calcif Tissue Int 51: 14–17

    PubMed  CAS  Google Scholar 

  91. Mazess RB (1987) Bone density in the diagnosis of osteoporosis: thresholds and breakpoints. Calcif Tissue Int 41: 117–118

    Google Scholar 

  92. Melton LJ III, Atkinson EJ, O’Fallon WM, Wahner HW, Riggs BL (1993) Longterm fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res 8: 1227–1233

    Google Scholar 

  93. Melton LJ III, Chrischilles EA, Cooper C, Lane AW, Riggs BL (1992) How many women have osteoporosis? J Bone Miner Res 7: 1005–1010

    PubMed  Google Scholar 

  94. Miller CG (1993) Bone density measurements in clinical trials: the challenge of insuring optimal data. Br J Clin Res 4: 113–120

    Google Scholar 

  95. Miller CG, Herd RJM, Ramalingam T, Fogelman I, Blake GM (1993) Ultrasonic velocity measurements through the calcaneus: which velocity should be measured? Osteoporosis Int 3: 31–35

    CAS  Google Scholar 

  96. Moris M, Peretz A, Tjeka R,Negaban N,Wouters M, Bergmann P (1995) Quantitative ultrasound bone measurements: normal values and comparison with bone mineral density by dual X-ray absorptiometry. Calcif Tissue Int 57: 6–10

    PubMed  CAS  Google Scholar 

  97. Nevitt M, Johnell O, Black DM, Ensrud K, Genant HK, Cummings SR (1994) Bone mineral density predicts non-spine fractures in very elderly women. Osteoporosis Int 4: 325–331

    CAS  Google Scholar 

  98. Nguyen T, Sambrook P, Kelly P, Jones G, Lord S, Freund J, Eisman J (1993) Prediction of osteoporotic fractures by postural instability and bone density. BMJ 307: 1111–1115

    PubMed  CAS  Google Scholar 

  99. Njeh CF,Apple K, Temperton DH, Boivin CM (1996) Radiological assessment of a new bone densitometer–the Lunar EXPERT. Br J Radiol 69: 335–340

    Google Scholar 

  100. Nord RH (1992) Work in progress: a cross-correlation study on four DXA instruments designed to culminate in inter-manufacturer standardization. Osteoporosis Int 2: 210–211

    CAS  Google Scholar 

  101. Nordin BEC (1987) The definition and diagnosis of osteoporosis. Calcif Tissue Int 4057–58

    Google Scholar 

  102. Odvina CV, Wergedal JE, Libanati CR, Schulz EE, Baylink DJ (1988) Relationship between trabecular vertebral body density and fractures: a quantitative definition of spinal osteoporosis. Metabolism 37: 221–228

    PubMed  CAS  Google Scholar 

  103. Orgee JM, Foster H, McCloskey EV, Khan S, Coombes G, Kanis JA (1996) A precise method for the assessment of tibial ultrasound velocity. Osteoporosis Int 6: 1–7

    CAS  Google Scholar 

  104. Patel R, Blake GM, Batchelor S, Fogelman I (1996) Occupational dose to the radiographer in dual X-ray absorptiometry: a comparison of pencil-beam and fan-beam systems. Br J Radiol 69: 539–543

    PubMed  CAS  Google Scholar 

  105. Peel NFA, Eastell R (1994) Diagnostic value of estimated volumetric bone mineral density of the lumbar spine in osteoporosis. J Bone Miner Res 9: 317–320

    Google Scholar 

  106. Pocock NA, Sambrook PN, Nguyen T, Kelly P, Freund J, Eisman JA (1992) Assessment of spinal and femoral bone density by dual X-ray absorptiometry: comparison of Lunar and Hologic instruments. J Bone Miner Res 7: 1081–1084

    PubMed  CAS  Google Scholar 

  107. Porter R, Miller C, Grainger D, Palmer S (1990) Prediction of hip fracture in elderly women: a prospective study. BMJ 301: 638–641

    PubMed  CAS  Google Scholar 

  108. Pouilles JM, Tremollieres F, Ribot C (1993) Spine and femur densitometry at the menopause: are both sites necessary in the assessment of the risk of osteoporosis? Calcif Tissue Int 52344–347

    Google Scholar 

  109. Reinbold WD, Adler CP, Kalender WA, Lente R (1991) Accuracy of vertebral mineral determination by dual-energy quantitative computed tomography. Skeletal Radio! 20: 25–29

    CAS  Google Scholar 

  110. Ross PD, Genant HK, Davis JW, Miller PD, and Wasnich RD (1993) Predicting vertebral fracture incidence from prevalent fractures and bone density among non-black, osteoporotic women. Osteoporosis Int 3: 120–126

    CAS  Google Scholar 

  111. Ross PD, Huang C, Davis JW, Wasnich RD (1995) Vertebral dimension measurements improve prediction of vertebral fracture incidence. Bone 16: 257S - 2625

    Google Scholar 

  112. Saville PD (1967) A quantitative approach to simple radiographic diagnosis of osteoporosis: its application to the osteoporosis of rheumatoid arthritis. Arthritis Rheum 10: 416–422

    PubMed  CAS  Google Scholar 

  113. Seeley DG, Kelsey J, Jergas M, Nevitt MC (1996) Predictors of ankle and foot fractures in older women. J Bone Miner Res 11: 1347–1355

    PubMed  CAS  Google Scholar 

  114. Singh YM, Nagrath AR, Maini PS (197o) Changes in trabecular pattern of the upper end of the femur as an index of osteoporosis. J Bone Joint Surg Am 52: 457–467

    Google Scholar 

  115. Slosman DO, Rissoli R, Donath A, Bonjour J-P (199o) Vertebral bone mineral density measured laterally by dual-energy X-ray absorptiometry. Osteoporosis Int 1: 23–29

    Google Scholar 

  116. Stegman MR, Recker RR, Davies KM, Ryan RA, Heaney RP (1992) Fracture risk as determined by prospective and retrospective study designs. Osteoporos Int 2: 290–297

    PubMed  CAS  Google Scholar 

  117. Steiger P, Block JE, Steiger S, Heuck A, Friedlander A, Ettinger B, Harris ST, Glider CC, Genant HK (1990) Spinal bone mineral density measured with quantitative CT: effect of region of interest, vertebral level, and technique. Radiology 175537–543

    Google Scholar 

  118. Stein I (1937) The evaluation of bone density in the roentgenogram by the use of an ivory wedge. Am J Roentgenol 37: 678–682

    Google Scholar 

  119. Stein JA, Lazewatsky JL, Hochberg AM (1987) Dual energy X-ray bone densitometer incorporating an internal reference system. Radiology 165 (P): 313

    Google Scholar 

  120. Torgerson DJ, Campbell MK, Thomas RE, Reid DM (1996) Prediction of perimenopausal fracture by bone density and other risk factors. J Bone Miner Res 11: 293–297

    PubMed  CAS  Google Scholar 

  121. Tothill P, Fenner JAK, Reid DM (1995) Comparisons between three dual-energy X-ray absorptiometers used for measuring spine and femur. Br J Radiol 68: 621–629

    Google Scholar 

  122. Verheij LF, Blokland AK, Papapoulos SE, Zwinderman AH, Pauwels EKJ (1992) Optimization of follow-up measurements of bone mass. J Nucl Med 331406–1410

    Google Scholar 

  123. Vogel JM (1987) Application principles and technical considerations in SPA. In: Genant HK (ed) Osteoporosis update 1987. Radiology Research and Education Foundation, San Francisco, pp 219–231

    Google Scholar 

  124. Vogel JM, Anderson JT (1972) Rectilinear transmission scanning of irregular bones for quantification of mineral content. J Nucl Med 13: 13–18

    PubMed  CAS  Google Scholar 

  125. Wahner HW, Dunn WL, Brown ML, Morin RL, Riggs BL (1988) Comparison of dual-energy X-ray absorptiometry and dual photon absorptiometry for bone mineral measurements of the lumbar spine. Mayo Clin Proc 63: 1075–1084

    PubMed  CAS  Google Scholar 

  126. Wahner HW, Looker A, Dunn WL, Walters LC, Hauser MF, Novak C (1994) Quality control of bone densitometry in a national health survey, ( NHANES III) using three mobile examination centers. J Bone Miner Res 9951–60

    Google Scholar 

  127. Wasnich R (1987) Fracture prediction with bone mass measurements. In: Genant HK (ed) Osteoporosis update 1987. Radiology Research and Education Foundation, San Francisco, pp 95–101

    Google Scholar 

  128. Wasnich RD, Davis JW, Ross PD (1994) Spine fracture risk is predicted by non-spine fractures. Osteoporosis Int 4: 1–5

    Google Scholar 

  129. Wasnich RD, Ross PD, Davis JW,Vogel JM (1989) A comparison of single and multi-site BMC measurements for assessment of spine fracture probability. J Nucl Med 30: 1166–1171

    CAS  Google Scholar 

  130. Williams JA, Wagner J, Wasnich R, Heilbrun L (1984) The effect of long-distance running upon appendicular bone mineral content. Med Sci Sports Exercise 16: 223–227

    CAS  Google Scholar 

  131. Wilson CR, Collier BD, Carrera GF, Jacobson DR (1990) Acronym for dual-energy X-ray absorptiometry. Radiology 176: 875

    PubMed  CAS  Google Scholar 

  132. World Health Organization (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. WHO, Geneva

    Google Scholar 

  133. Jones CD, Laval-Jeantet AM, Laval-Jeantet MH, and Genant HK (1987) Importance of measurement of spongious vertebral bone mineral density in the assessment of osteoporosis. Bone 8: 201–206

    PubMed  CAS  Google Scholar 

  134. Melton III LJ, Thamer M, Ray NF, Chan JK, Chesnut III CH, Einhorn TA, Johnston CC, Raisz LG, Silverman SL, and Siris ED (1997) Fractures attributable to osteoporosis: report from the National Osteoporosis Foundation. J Bone Miner Res 12: 16–23

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jergas, M., Uffmann, M. (1998). Basic Considerations and Definitions in Bone Densitometry. In: Genant, H.K., Guglielmi, G., Jergas, M. (eds) Bone Densitometry and Osteoporosis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80440-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80440-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80442-7

  • Online ISBN: 978-3-642-80440-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics