Steady State of Dendrite Growth with Zero Surface Tension and Its Regular Perturbation Expansion

  • Jian-Jun Xu
Part of the Springer Series in Synergetics book series (SSSYN, volume 68)

Abstract

For zero surface tension (ε = 0) and arbitrary undercooling, the three-dimensional system (3.13)–(3.25) allows the following steady similarity solution
$$ T = T_* (\eta ) = T_\infty + \frac{{\eta _0^2 }} {2}\text{e}^{\frac{{\eta _0^2 }} {2}} E_1 \left( {\frac{{\eta _0^2 \eta ^2 }} {2}} \right) $$
(4.1)
$$ T_{\text{S}} = T_{\text{S*}} = T_* (1) = 0 $$
$$ \eta _* = 1 $$
$$ T_\infty = - \frac{{\eta _0^2 }} {2}\text{e}^{\frac{{\eta _0^2 }} {2}} E_1 \left( {\frac{{\eta _0^2 }} {2}} \right) $$
$$ (0\underline < \,\xi \, < \,\infty ), $$
where E 1(x) is the exponential function defined as
$$ E_1 (x) = \int\limits_x^\infty {\frac{{e^{ - t} }} {t}dt} $$
(4.2)

(see [4.1]). This solution was first found by Ivantsov in 1946 (cf. [4.2] and [4.3]) and is now called the Ivantsov solution.

Keywords

Lution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 4.1
    M. Abramovitz and I. A. Stegun (Eds.)Handbook of Mathematical Functions(Dover, New York 1964).Google Scholar
  2. 4.2
    G. P. Ivantsov, “Temperature Field around a Spheroidal, Cylindrical and Acicular Crystal Growing in a Supercooled Melt”, Dokl. Akad. Nauk, SSSR. 58, No. 4, pp. 567–569, (1947).Google Scholar
  3. 4.3
    G. Horvay and J. W. Cahn, “Dendritic and Spheroidal Growth”, Acta Metall. 9, pp. 695–705, (1961).CrossRefGoogle Scholar
  4. 4.4
    D. E. Temkin, “Growth Rate of the Needle-Crystal Formed in a Supercooled Melt”, Dokl. Akad. Nauk. SSSR. 132, pp. 1307–1310, (1960).Google Scholar
  5. 4.5
    G. F. Bolling and W. A. J. Tiller, “Growth from the Melt. III. Dendrite Growth”, J. Appl. Phys. 32, No. 12, pp. 2587–2605, (1961).ADSCrossRefGoogle Scholar
  6. 4.6
    R. Trivedi, “Growth of Dendritic Needles from a Supercooled Melt”, Acta Metall. 18, pp. 287–296, (1970).CrossRefGoogle Scholar
  7. 4.7
    M. E. Glicksman, R. J. Schaefer, and J. D. Ayers, “High-Confidence Measurement of Solid/Liquid Surface Energy in a Pure Material”, Phil. Mag. 32, pp. 725–743, (1975).ADSCrossRefGoogle Scholar
  8. 4.8
    M. E. Glicksman, R. J. Schaefer, and J. D. Ayers, “Dendrite Growth — A Test of Theory”, Metall.Trans. 7A, pp. 1747–1759, (1976).Google Scholar
  9. 4.9
    J. S. Langer and H. Müller-Krumbhaar, “Theory of Dendritic Growth — I. Elements of a Stability Analysis; II. Instabilities in the Limit of Vanishing Surface Tension; III. Effects of Surface Tension”, Acta Metall. 26, pp. 1681–1708, (1978).CrossRefGoogle Scholar
  10. 4.10
    J. S. Langer, “Instability and Pattern Formation in Crystal Growth”, Rev. Mod. Phys. 52, 1–28, (1980).ADSCrossRefGoogle Scholar
  11. 4.11
    J. J. Xu, “Global Asymptotic Solution for Axisymmetric Dendrite Growth with Small Undercooling”, in Structure and Dynamics of Partially Solidified System, Ed. by D.E. Loper NATO ASI Series E. No. 125, (1987), pp. 97–109.Google Scholar
  12. 4.12
    J. J. Xu, “Asymptotic Theory of Steady Axisymmetric Needle-like Crystal Growth”, Studies in Applied Mathematics, 82, pp. 71–91, (1990).MathSciNetADSMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Jian-Jun Xu
    • 1
  1. 1.Department of Mathematics and StatisticsMcGill UniversityMontrealCanada

Personalised recommendations