Advertisement

Magnetresonanzuntersuchungen bei kardiovaskulären Erkrankungen

  • P. Theissen
  • H. Schicha

Zusammenfassung

Die Diagnostik bei erworbenen und angeborenen kardiovaskularen Vitien gründet sich in zunehmendem Maße auf nichtinvasive Techniken. Zur Bewertung von kardialer Morphologie und Funktion ist die Echokardiographie nach langjähriger Erfahrung als verlaßliche Methode fest eingeführt. Die Rolle der Magnetresonanztomographie (MRT) ist aus verschiedenen Gründen sowohl als Konkurrenz als auch als Ergänzung zur Echokardiographie zu sehen. Besonders wegen der allgemeinen Verfügbarkeit und der größeren Vertrautheit mit der Echokardiographie kommt die MRT derzeit zum Einsatz, wenn diagnostische Informationen mit der Echokardiographie nur unzureichend zu erheben sind.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Akins EW, Hill JA, Sievers KW, Conti CR (1987) Assessment of left ventricular wall thickness in healed myocardial infarction by magnetic resonance imaging. Am J Cardiol 59: 24–28PubMedCrossRefGoogle Scholar
  2. 2.
    Baer FM, Smolarz K, Jungehiilsing M et al. (1992) Chronic myocardial infarction: assessment of morphology, function, and perfusion by gradient echo magnetic resonance imaging and 99mTc-methoxyisobutylisonitrile SPECT. Am Heart J 123: 636–645PubMedCrossRefGoogle Scholar
  3. 3.
    Baer FM, Voth E, Schneider CA, Theissen P, Schicha H, Sechtem U (1995) Comparison of low- dose dobutamine-gradient-echo magnetic resonance imaging and positron emission tomography with [18F-fluorodeoxyglucose in patients with chronic coronary artery disease. A functional and morphological approach to the detection of residual myocardial viability. Circulation 91: 1006–1015Google Scholar
  4. 4.
    Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL (1991) Myocardial viability in patients wich chronic coronary artery disease and left ventricular dysfunction: Thallium-201 reinjection versus 18F-fluorodeoxyglucose. Circulation 83: 26–37PubMedGoogle Scholar
  5. 5.
    Camacho SA, Lanzer P, Toy BJ, Gober J, Valenza M, Botvinick EH, Weiner MW (1988) In vivo alterations of high-energy phosphates and intracellular pH during reversible ischemia in pigs: a 3IP magnetic resonance spectroscopy study. Am Heart J 116: 701–708PubMedCrossRefGoogle Scholar
  6. 6.
    Chien D, Edelman T (1992) Fast magnetic resonance imaging. In: Higgins CB, Hricak H, Helms CA (eds) MRI of the body. Raven press, New York, pp 175–198Google Scholar
  7. 7.
    Gomes AS, Lois JF, Williams RG (1990) Pulmonary arteries: MR imaging in patients with congenital obstruction of the right ventricular outflow tract. Radiology 174: 51–57Google Scholar
  8. 8.
    Guth BD, Martin JF, Heusch G, Ross J J (1987) Regional myocardial blood flow, function and metabolism using phosphorus-31 nuclear magnetic resonance spectroscopy during ischemia and reperfusion in dogs. J Am Coll Cardiol 10: 673–681PubMedCrossRefGoogle Scholar
  9. 9.
    Higgins GB, Sakuma H (1996) Heart disease: Functional evaluation with MR imaging. Radiology 199: 307–315Google Scholar
  10. 10.
    Manning WJ, Li W, Boyle NG, Edelman RR (1993) Fat-suppressed breath-hold magnetic resonance coronary angiography. Circulation 87: 94–104PubMedGoogle Scholar
  11. 11.
    Nienaber CA, Kodolitsch Y von, Nicolas V et al. (1993) The diagnosis of thoracic aortic dissection by noninvasive imaging procedures. N Engl J Med 328: 1–9PubMedCrossRefGoogle Scholar
  12. 12.
    Rebergen SA, Wall EE van der, Doornbos J, Roos A de (1993) Magnetic resonance measurement of velocity and flow: technique, validation, and cardiovascular applications. Arn Heart J 126: 1439–1456CrossRefGoogle Scholar
  13. 13.
    Sechtem U, Tscholakoff D, Higgins CB (1986) MRI of the abnormal pericardium. AJR 147: 245–256Google Scholar
  14. 14.
    Semelka RC,Tomei E,Wagner S,Mayo J,Caputo G,O’Sullivan M, Parmley WW, Chatterjee K, Wolfe C, Higgins CB (1990) Interstudy reproducibility of dimensional and functional measurements between cine magnetic resonance studies in the morphologically abnormal left ventricle. Am Heart J 19: 1367–1373Google Scholar
  15. 15.
    Semelka RC, Shoenut JP, Wilson ME, Pellech AE, Patton JN (1992) Cardiac Masses: Signan Intensity Features on Spin-Echo, Gradient-Echo, Gadolinium-enhanced Spin-Echo, and TurboFLASH Images. JMRI 2: 415–420Google Scholar
  16. 16.
    Shellock FG (1992) MRI biologic effects and safety considerations. In: Higgins CB, Hricak H, Helms CA (eds) MRI of the body. Raven press, New York, pp 233–265Google Scholar
  17. 17.
    Theissen P, Sechtem U, Langkamp S, Jungehiilsing M, Hilger HH, Schicha H (1989) Nicht-invasive Beurteilung aortokoronarer Venenbriicken mit Kernspintomographie. Nucl Med 28: 234–242Google Scholar
  18. 18.
    Van Rossum AC, Visser FC, Van Eenige MJ, Sprenger M, Valk J, Verheugt FW, Roos JP (1990) Value of gadolinium-diethylene-triamine pentaacetic acid dynamics in magnetic resonance imaging of acute myocardial infarction with occluded and reperfused coronary arteries after thrombolysis. Am J Cardiol 65: 845–851PubMedCrossRefGoogle Scholar
  19. 19.
    White RD, Holt WW, Cheitlin MD et al. (1988) Estimation of the functional and anatomic extent of myocardial infarction using magnetic resonance imaging. Am Heart J115: 740–748CrossRefGoogle Scholar
  20. 20.
    Yabe T, Mitsunami K, Inubushi T, Kinoshita M (1995) Quantitative measurements of cardiac phosphorus metabolites in coronary artery disease by 3IP magnetic resonance spectro-scopy. Circulation 92: 15–23PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • P. Theissen
  • H. Schicha

There are no affiliations available

Personalised recommendations