Skip to main content

Significance of Ion Channels and Membrane Potential Changes in Cells

  • Chapter
Book cover Signal Transduction — Single Cell Techniques

Part of the book series: Springer Lab Manual ((SLM))

  • 775 Accesses

Abstract

Ion channels are integral membrane proteins spanning membranes. These proteins have virtual holes inside (which actually serve as tunnels) allowing ions to pass through, thereby circumventing the hydrophobic barrier of the lipid bilayer that separates cell interior from extracellular space. The cations and anions pass through their specialized channels in a strictly regulated way, in which the diameter and fixed charges in the actual ion tunnel are important, but not exclusive, restricting structural characteristics. Ion channels of cells from the nervous system and muscles are well studied and display enormous diversity (Lewis and Cahalan 1988; Pieri et al. 1989; Jan and Jan 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bashford CL, Pasternak CA (1986) Plasma membrane potential of some animal cells is generated by ion pumping, not by ion gradients. Trends Biochem Sci 11: 113–116

    Article  CAS  Google Scholar 

  • Damjanovich S, Edidin M, Szöllösi J, Trón L (1994) Mobility and proximity in biological membranes. Chapter 6. Ion channels and membrane potential changes in lymphocytes. CRC, Pearl River, NY, pp 225–326

    Google Scholar 

  • Grissmer S, Hanson DC, Natoli EJ, Cahalan MD, Chandy KG (1990a) CD4–CD8- T cells from mice with collagen arthritis display aberrant expression of type 1 K+ channels. J Immunol 145: 2105–2109

    PubMed  CAS  Google Scholar 

  • Grissmer S, Dethlef B, Wasmoth JJ, Godlin AL, Gutman GA, Cahalan MD, Chandy KG (1990b) Expression and chromosomal localization of a lymphocyte K+ channel gene. Proc Natl Acad Sci USA 87: 9411–9415

    Article  PubMed  CAS  Google Scholar 

  • Jan LY, Jan YN (1990) How might the diversity of potassium channels be generated? Trends Neurosci 13: 415–419

    Article  PubMed  CAS  Google Scholar 

  • Lewis RJ, Cahalan MD (1988) Plasticity of ion channels: parallels between the nerv-ous and the immune systems. Trends Neurosci. 11: 214–218

    Article  PubMed  CAS  Google Scholar 

  • Pieri C, Recchioni R, Moroni F, Balkay L, Marian T, Tron L, Damjanovich S. (1989) Ligand and voltage gated sodium channels may regulate electrogenic pump activity in human, mouse and rat lymphocytes. Biochem Biophys Res Comm 160: 999–1002

    Article  PubMed  CAS  Google Scholar 

  • Rich DP, Anderson MP, Gregory RJ, Cheng SH, Paul S, Jefferson DM, McCann JD, Klinger KW, Smith AE, Welch MJ (1990) Expression of cystic fibrosis transmembrane conductance regulator corrects defective chloride channel regulation in cystic fibrosis airway epithelial cells. Nature 347: 358–363

    Article  PubMed  CAS  Google Scholar 

  • Van DuijnB, Vogelzang SA (1989) The membrane potential of the cellular slime mold Dictyostelium discoideum is mainly generated by an electrogenic proton pump. Biochim Biophys Acta 983: 186–192

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Damjanovich, S. (1998). Significance of Ion Channels and Membrane Potential Changes in Cells. In: Van Duijn, B., Wiltink, A. (eds) Signal Transduction — Single Cell Techniques. Springer Lab Manual. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80368-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80368-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-48976-1

  • Online ISBN: 978-3-642-80368-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics