Skip to main content

Mouse Preimplantation Embryos and Oocytes as an In Vivo System to Study Transcriptional Enhancers

  • Chapter
Microinjection and Transgenesis

Part of the book series: Springer Lab Manual ((SLM))

Abstract

Multicellular organisms, as opposed to their unicellular counterparts, face a unique problem in carrying out life-sustaining functions. Whereas, in unicellular organisms the same cell performs all the necessary functions, in multicellular organisms there is a division of labor: specific cell types carry out specific functions in a spatial and temporal manner. For example, as a fertilized mouse one-cell embryo divides, differentiates, and develops into a complete animal, it is crucial to express the right gene at the right time and by the right cell type. One of the important mechanisms by which multicellular organisms achieve such a goal is to regulate transcription of RNA polymerase II promoters through enhancers. Our present knowledge of the principles that regulate mammalian transcription, including the enhancer function, mainly stems from studies involving cell-free in vitro systems, or in vivo systems comprised of tissue culture cells or animal viruses. In fact, although a wealth of knowledge on the mechanism of RNA polymerase II trancription that occurs at the promoter site has been gained from in vitro systems consisting of purified transcription factors, most of these systems do not exhibit enhancer function, unless the template DNA is reconstituted into chromatin. Similarly, it has been relatively unknown how these principles apply in physiological processes that regulate, for example, the development of a fertilized one-cell embryo into an animal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bachvarova RF (1992) A maternal tail of poly(A): the long and the short of it. Cell 69: 895–897

    Article  PubMed  CAS  Google Scholar 

  • Blatt C, DePamphilis M (1993) Striking homology between mouse and human transcription enhancer factor-1 (TEF-1). Nucleic Acids Res 21: 747–748

    Article  PubMed  CAS  Google Scholar 

  • Carey M, Leatherwood J, Ptashne M (1990). A potent GAL4 derivative activates transcription at a distance in vitro. Science 247: 710–712

    Article  PubMed  CAS  Google Scholar 

  • Christians E, Rao VH, Renard JP (1994) Sequential aquisition of transcriptional control during early embryonic development in the rabbit. Dev Biol 164: 160–172

    Article  PubMed  CAS  Google Scholar 

  • Clarke HJ, Oblin C, Bustin M (1992) Developmental regulation of chromatin composition during mouse embryogenesis: somatic histone H1 is first detectable at the four-cell stage. Development 115: 791–799

    PubMed  CAS  Google Scholar 

  • Conover JC, Gretchen LT, Zimmermann JW, Burke B, Schultz RM (1991) Stage-specific expression of a family of proteins that are major products of zygotic gene activation in the mouse embryo. Dev Biol 144: 392–404

    Article  PubMed  CAS  Google Scholar 

  • Delouis C, Bonnerot C, Vernet M, Nicolas J-F (1992) Expression of microinjected DNA and RNA in early rabbit embryos: chnages in permissiveness for expression and transcriptional selectivity. Exp Cell Res 201: 284–291

    Article  PubMed  CAS  Google Scholar 

  • DePamphilis ML, Herman SA, Martinez-Salas E, Chalifour LE, Wirak DO, Cupo DY, Miranda M (1988) Microinjecting DNA into mouse ova to study DNA replication and gene expression and to produce transgenic animals. BioTechniques 6: 662–680

    PubMed  CAS  Google Scholar 

  • Felsenfeld G (1992) Chromatin as an essential part of the transcriptional mechanism. Nature 355: 219–224

    Article  PubMed  CAS  Google Scholar 

  • Henery CC, Miranda M, Wiekowski M, Wilmut I, DePamphilis M (1995) Repression of gene expression at the beginning of mouse development. Dev Biol 169: 448–460

    Article  PubMed  CAS  Google Scholar 

  • Hogan BL, Constantini F, Lacy E (1986) Manipulating the mouse embryo. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Kamakaka RT, Bulger M, Kadonaga JT (1993) Potentiation of RNA polymerase II transcription by Ga14-VP16 during but not after DNA replication and chromatin assembly. Genes Dev 7: 1779

    Article  PubMed  CAS  Google Scholar 

  • Latham KE, Solter D, Schultz RM (1992) Acquisition of a transcriptionally permissive state during the one-cell stage of mouse embryogenesis. Dev Biol 149: 457–462

    Article  PubMed  CAS  Google Scholar 

  • Laybourn PJ, Kadonaga JT (1991) Role of nucleosomal cores and histone H1 in regulation of transcription by RNA polymerase II. Science 254: 238–245

    Article  PubMed  CAS  Google Scholar 

  • Laybourn PJ, Kadonaga JT (1992) Threshold phenomena and long-distance activation of transcription by RNA polymerase II. Science 257: 1682–1685

    Article  PubMed  CAS  Google Scholar 

  • Lee DY, Hayes JJ, Pruss D, Wolffe A (1993) A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72: 73–84

    Article  PubMed  CAS  Google Scholar 

  • Lira SA, Kinloch RA, Mortillo S, Wassarman P (1990) An upstream region of the mouse ZP3 gene directs expression of firefly luciferase specifically to growing oocytes in transgenic mice. Proc Natl Acad Sci 87: 7215–7219

    Article  PubMed  CAS  Google Scholar 

  • Majumder S, DePamphilis ML (1994a) Requirements for DNA transcription and replication at the beginning of mouse development. J Cell Biochem 55: 59–68

    Article  PubMed  CAS  Google Scholar 

  • Majumder S, DePamphilis ML (1994b) TATA-dependent enhancer stimulation of promoter activity in mice is developmentally acquired. Mol. Cell. Biol. 14: 4258–4268

    PubMed  CAS  Google Scholar 

  • Majumder S, DePamphilis ML (1995) A unique role for enhancers is revealed during early mouse development. BioEssays 17: 879–889

    Article  PubMed  CAS  Google Scholar 

  • Majumder S, Miranda M, DePamphilis M. (1993) Analysis of gene expression in mouse preimplantation embryos demonstrates that the primary role of enhancers is to relieve repression of promoters. EMBO J 12: 1131–1140

    PubMed  CAS  Google Scholar 

  • Majumder S, Zhao Z, Kaneko K, DePamphilis M (1997) Developmental aquisition of enhancer function requires a unique coactivator activity. EMBO J 16: 1721–1731

    Article  PubMed  CAS  Google Scholar 

  • Manley JL, Proudfoot NJ (1994) RNA 3’ ends: formation and function-meeting review. Genes Dev 8: 259–264

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Salas E, Cupo DY, DePamphilis ML (1988) The need for enhancers is acquired upon formation of a diploid nucleus during early mouse development. Genes Dev 2: 1115–1126

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Salas E, Linney E, Hassell J, DePamphilis ML (1989) The need for enhancers in gene expression first appears during mouse development with formation of a zygotic nucleus. Genes Dev 3: 1493–1506

    Article  PubMed  CAS  Google Scholar 

  • Melin F, Miranda M, Montreau N, DePamphilis ML, Blangy D (1993) Transcription enhancer factor-1 (TEF-1) DNA binding sites can specifically enhance gene expression at the beginning of mouse development. EMBO J 12: 4657–4666

    PubMed  CAS  Google Scholar 

  • Millar SE, Lader E, Liang L-F, Dean J (1991) Oocyte specific factors bind a conserved upstream sequence required for mouse zona pellucida promoter activity. Mol Cell Biol 11: 6197–6204

    PubMed  CAS  Google Scholar 

  • Miranda M, DePamphilis M (1993) Preparation of injection pipettes. In: Wassermann PM, DePamphilis ML (eds) A guide to mouse development. Methods Enzymol 225: 412–433

    Chapter  Google Scholar 

  • Miranda M, Majumder S, Wiekowski M, DePamphilis ML (1993) Application of firefly luciferase to preimplantation development. In: Wassarman PM, DePamphilis ML (eds) A guide to mouse development. Methods Enzymol 225: 412–433

    Chapter  Google Scholar 

  • Ohsumi K, Katagiri C (1991) Occurrence of H1 subtypes specific to pronuclei and cleavage-stage cell nuclei of anuran amphibians. Dev Biol 147: 110–120

    Article  PubMed  CAS  Google Scholar 

  • Paranjape SM, Kamakaka RT, Kadonaga JT (1994) Role of chromatin structure in the regulation of transcription by RNA polymerase II. Annu Rev Biochem 63: 265–297

    Article  PubMed  CAS  Google Scholar 

  • Pazin MJ, Kamakaka RT, Kadonaga JT (1994) ATP-dependent nucleosome reconfiguration and transcriptional activation from preassembled chromatin templates. Sience 266: 2007–2011

    Article  CAS  Google Scholar 

  • Richter JD (1991) Translational control during early development. BioEssays 13: 179–183

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, an Maniatis T (1989) Molecular cloning a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schickler M, Lira SA, Kinloch RA, Wassarman P (1992) A mouse oocyte-specific protein that binds to a region of mZP3 promoter responsible for oocyte-specific mZP3 gene expression. Mol Cell Biol 12: 120–127

    PubMed  CAS  Google Scholar 

  • Schultz GA, Heyner S (1992) Gene expression in pre-implantation mammalian embryos. Mutat Res 296: 17–31

    PubMed  CAS  Google Scholar 

  • Schultz RM (1993) Regulation of zygotic gene activation in the mouse. BioEssays 8: 531–538

    Article  Google Scholar 

  • Seshagiri PB, McKenzie DI, Bavister BD, Williamson JL, Aiken JM (1992) Golden hamster embryonic genome activation occurs at the two-cell stage: correlation with major developmental changes. Mol Reprod Dev 32: 229–235

    Article  PubMed  CAS  Google Scholar 

  • Shen X, Gorovsky M (1996) Linker histone H1 regulates specific gene expression but not global transcription in vivo. Cell 86: 475–483

    Article  PubMed  CAS  Google Scholar 

  • Simerly C, Schatten G (1993) Techniques for localization of specific molecules in oocytes and embryos. Methods Enzymol 225: 516–553

    Article  PubMed  CAS  Google Scholar 

  • Smith RC, Dworkin-Rastl E, Dworkin MB (1988) Expression of a histone Hl-like protein is restricted to early Xenopus development. Genes Devel 2: 1284–1295

    Article  PubMed  CAS  Google Scholar 

  • Struhl K (1996) Chromatin structure and RNA polymerase II connection: implications for transcription. Cell 84: 179–182

    Article  PubMed  CAS  Google Scholar 

  • Studitsky V, Clark D, Felsenfeld G (1995) Overcoming a nucleosomal barrier to transcription. Cell 83: 19–27

    Article  PubMed  CAS  Google Scholar 

  • Tazi J, Bird A (1990) Alternative chromatin structure at CpG islands. Cell 60: 909–920

    Article  PubMed  CAS  Google Scholar 

  • Telford NA, Watson AJ, Schultz GA (1990) Transition form maternal to embryonic control in early mammalian development. Mol Reprod Dev 26: 90–100

    Article  PubMed  CAS  Google Scholar 

  • Tremethick DJ, Drew H (1993) High mobility group proteins 14 and 17 can space nucleosomes in vitro. J Biol Chem 268: 11389–11393

    PubMed  CAS  Google Scholar 

  • Turner BM (1991) Histone acetylation and control of gene expression. J Cell Sci 99: 13–20

    PubMed  CAS  Google Scholar 

  • Walters M, Fiering S, Eidemiller J, Magis W, Groudine M, Martin D (1995) Enhancers increase the probability but not the level of gene expression. Proc Natl Acad Sci 92: 7125–7129

    Article  PubMed  CAS  Google Scholar 

  • Wassarman P, DePamphilis M (1993) Methods in Enzymology, vol 225. Guide to techniques in mouse development. Academic Press, New York

    Google Scholar 

  • Wiekowski M, Miranda M, DePamphilis ML (1991) Regulation of gene expression in preimplantation mouse embryos: effects of zygotic gene expression and the first mitosis on promoter and enhancer activities. Dev Biol 147: 403–414

    Article  PubMed  CAS  Google Scholar 

  • Wiekowski M, Miranda M, DePamphilis ML (1993) Requirements for promoter activity in mouse oocytes and embryos distinguish paternal pronuclei from maternal and zygotic nuclei. Dev Biol 159: 366–378

    Article  PubMed  Google Scholar 

  • Wolffe AP, Pruss D (1996) Targeting chromatin disruption: transcription regulators that acetylate histones. Cell 84: 817–819

    Article  PubMed  CAS  Google Scholar 

  • Workman JL, Buchman, AR (1993) Multiple functions of nucleosomes and regulatory factors in transcription. Trends Biochem Sci 18: 90–95

    Article  PubMed  CAS  Google Scholar 

  • Workman JL, Taylor ICA, Kingston RE (1991) Activation domains of stably bound GAL4 derivatives alleviate repression of promoters by nucleosomes. Cell 64: 533–544

    Article  PubMed  CAS  Google Scholar 

  • Xiao JH, Davidson I, Matthes H, Garnier JM, Chambon P (1991) Cloning, expression, and transcriptional properties of the human enhancer factor TEF-1. Cell 65: 551–568

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Majumder, S. (1998). Mouse Preimplantation Embryos and Oocytes as an In Vivo System to Study Transcriptional Enhancers. In: Cid-Arregui, A., García-Carrancá, A. (eds) Microinjection and Transgenesis. Springer Lab Manual. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80343-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80343-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61895-9

  • Online ISBN: 978-3-642-80343-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics