Skip to main content

Mouse Male Germ Cells in Culture: Toward a New Approach in Transgenesis?

  • Chapter
Microinjection and Transgenesis

Part of the book series: Springer Lab Manual ((SLM))

  • 944 Accesses

Abstract

To extend and diversify our methods for the manipulation of mammalian genomes, transfer of genes into germ cells might constitute a useful alternative to methods based on the use of fertilized zygotes, early embryos, or ES cells. These powerful techniques are time consuming and costly. Moreover, they are applicable only to a limited number of species. The search for alternative methods appears therefore as a worthwhile long term prospect. Since the function of germ cells is to transmit genes to successive generations, why not transfer DNA molecules directly into germ cells before fertilization? Very little information is available as to the ability of any genetic material, viral or cellular, to enter germ cells under natural conditions. If, during evolution, new genes may have been occasionally introduced into mammalian germ cells by retrovirus infection, this horizontal transfer has probably been a rare event. One experimental model is provided by a strain of laboratory mice (SWR/J), where efficient provirus acquisition in the female germline has been reported (Jenkins et al. 1985; Panthier et al. 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brinster RL, Avarbock MR (1994) Germline transmission of donor haplotype following spermatogonial transplantation (see comments). Proc Natl Acad Sci USA 91: 11303–11307

    Article  PubMed  CAS  Google Scholar 

  • Brinster RL, Zimmermann JW (1994) Spermatogenesis following male germ-cell transplantation. Proc. Natl Acad Sci USA 91: 11298–11302

    Article  PubMed  CAS  Google Scholar 

  • Buehr M, McLaren A (1993) Isolation and culture of primordial germ cells. Methods Enzymol 58–77

    Google Scholar 

  • Buehr M, Gu S, McLaren A (1993) Mesonephric contribution to testis differentiation in the fetal mouse. Development 117: 273–281

    PubMed  CAS  Google Scholar 

  • Clermont Y, Perey B (1957) The stages of the cycle of the seminiferous epithelium of the rat: practical definitions in PA-Schiff-Hematoxylin and Hematoxylin-Eosin stained sections. Rev Can Biol 16: 451–462

    PubMed  CAS  Google Scholar 

  • Clouthier DE, Avarbock MR, Maika SD, Hammer RE, Brinster RL (1996) Rat spermatogenesis in mouse testis. Nature 381: 418–421

    Article  PubMed  CAS  Google Scholar 

  • De FM, McLaren A (1983) In vitro culture of mouse primordial germ cells. Exp Cell Res 144: 417–427

    Article  Google Scholar 

  • Griswold MD (1995) Interactions between germ cells and Sertoli cells in the testis. Biol Reprod 52: 211–216

    Article  PubMed  CAS  Google Scholar 

  • Hofmann M-C, Hess RA, Goldberg E, Millan JL (1994) Immortalized germ cells undergo meiosis in vitro. Proc Natl Acad Sci USA 91: 5533–5537

    Article  PubMed  CAS  Google Scholar 

  • Hofmann M-C, Abramian D, Millan JL (1995) A haploid and a diploid cell cycle coexist in an in vitro immortalized spermatogenic cell line. Dev Genet 16: 119–127

    Article  PubMed  CAS  Google Scholar 

  • Jasin M, Zalamea P (1992) Analysis of β-galactosidase expression in transgenic mice by flow cytometry of sperm. Proc Natl Acad Sci USA 89: 10681–10685

    Article  PubMed  CAS  Google Scholar 

  • Jenkins JR, Rudge K, Chumakov P, Currie GA (1985) The cellular oncogene p53 can be activated by mutagenesis. Nature 317: 816–818

    Article  PubMed  CAS  Google Scholar 

  • Kimura Y, Yanagimachi R (1995) Mouse oocytes injected with testicular spermatozoa and round spermatids can develop into normal offspring. Development 121: 2397–2405

    PubMed  CAS  Google Scholar 

  • Matsui Y, Zsebo K, Hogan BL (1992) Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70: 841–847

    Article  PubMed  CAS  Google Scholar 

  • McLaren A (1992) Development of primordial germ cells in the mouse. Andrologia 24: 243–427

    Article  PubMed  CAS  Google Scholar 

  • McLaren A (1995) Germ cells and germ cell sex. Philos. Trans R Soc Lond, B Biol Sci 350: 229–233

    CAS  Google Scholar 

  • Meistrich ML (1977) Separation of spermatogenic cells from rodent testes. Methods Cell Biol 15: 15–54

    Article  PubMed  CAS  Google Scholar 

  • Ogura A, Matsuda J, Yanagimachi R (1994) Birth of normal young after electrofusion of mouse oocytes with round spermatids. Proc Natl Acad Sci USA 91: 7460–7462

    Article  PubMed  CAS  Google Scholar 

  • Panthier JJ, Condamine H, Jacob F (1988) Inoculation of newborn SWR/J females with an ecotropic murine leukemia virus can produce transgenic mice. Proc Natl Acad Sci USA 85: 1156–1160

    Article  PubMed  CAS  Google Scholar 

  • Paquis FV, Michiels JF, Vidal F, Alquier C, Pointis G, Bourdon V, Cuzin F, Rassoulzadegan M (1993) Expression in transgenic mice of the large T antigen of polyomavirus induces Sertoli cell tumours and allows the establishment of differentiated cell lines. Oncogene 8: 2087–2094

    Google Scholar 

  • Parvinen M (1993) Cyclic function of Sertoli cells. In: Russell LD, Griswold MD (eds) The Sertoli cell. Cache River Press, Clearwater, pp 349–364

    Google Scholar 

  • Rassoulzadegan M, Paquis FV, Bertino B, Sage J, Jasin M, Miyagawa K, van Heyningen V, Besmer P, Cuzin F (1993) Transmeiotic differentiation of male germ cells in culture. Cell 75: 997–1006

    Article  PubMed  CAS  Google Scholar 

  • Romrell LJ, Bellve AR, Fawcett D (1976) Separation of mouse spermatogenic cells by sedimentation velocity. Dev Biol 49: 119–131

    Article  PubMed  CAS  Google Scholar 

  • Russell LD, Griswold MD (1993) The Sertoli cell. Cache River Press, Clearwater

    Google Scholar 

  • Russell LD, Ettlin RA, Sinha Hikim AP, Clegg ED (1990) Histological and histopathological evaluation of the testis. Cache River Press, Clearwater

    Google Scholar 

  • Steinberger A, Jakubowiak A (1993) Sertoli cell culture: historical perspective and review of methods. In: Russell LD, Griswold MD (eds) The Sertoli Cell. Cache River Press, Clearwater, pp 155–180

    Google Scholar 

  • Wolgemuth DJ, Gizang-Ginsberg E, Engelmeyer E, Gavin BJ, Ponzetto C (1985) Separation of mouse testis cells on a Celsep apparatus and their usefulness as a source of high molecular weight DNA or RNA. Gamete Res 12: 1–10

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rassoulzadegan, M., Sage, J., Grandjean, V. (1998). Mouse Male Germ Cells in Culture: Toward a New Approach in Transgenesis?. In: Cid-Arregui, A., García-Carrancá, A. (eds) Microinjection and Transgenesis. Springer Lab Manual. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80343-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80343-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61895-9

  • Online ISBN: 978-3-642-80343-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics