Skip to main content
  • 33 Accesses

Zusammenfassung

Die physikalische Grundlage für die Messung der Geschwindigkeit von strömendem Blut in den Arterien ist der sogenannte Dopplereffekt. Trifft eine Schallwelle auf ein bewegtes Objekt, so wird die Frequenz der reflektierten Schallwelle, also des Echos, proportional zu der Objektgeschwindigkeit in Richtung auf die Schallquelle zu oder von ihr weg verschoben. Bewegt sich das Objekt auf die Schallquelle zu, verlangsamt sich die Frequenz des Echos, bewegt es sich in die entgegengesetzte Richtung, kommt es zu einer Frequenzzunahme. Die Frequenzdifferenz zwischen der emittierten und der reflektierten Schallwelle ist der sogenannte Dopplershift (Δf). Dieser hängt von der Schallgeschwindigkeit c, der Objektgeschwindigkeit v und von der Frequenz f der emittierten Welle ab und kann nach folgender Formel beschrieben werden:

$$ \Delta f = \frac{{2vf}}{c} $$
(Gleichung 2.1.1)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Aaslid R (1986) Transcranial Doppler Sonography. Springer, Wien, New York

    Google Scholar 

  • Aaslid R (1987) Visually evoked dynamic blood flow response of the human cerebral circulation. Stroke 18: 771–775

    Article  PubMed  CAS  Google Scholar 

  • Aaslid R, Lindegaard KF, Sorteberg W, Nornes H (1989) Cerebral autoregulation dynamics in humans. Stroke 20: 45–52

    Article  PubMed  CAS  Google Scholar 

  • Aaslid R, Markwalder TM, Nornes H (1982) Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 57: 769–774

    Article  PubMed  CAS  Google Scholar 

  • Aaslid R, Newell DW, Stooss R, Sorteberg W, Lindegaard KF (1991) Assessment of cerebral autoregulation dynamics from simultaneous arterial and venous transcranial Doppler recordings in humans. Stroke 22: 1148–1154

    Article  PubMed  CAS  Google Scholar 

  • Auer LM, Sayama I (1983) Intracranial pressure oscillations (B-waves) caused by oscillations in cerebrovascular volume. Acta Neurochir 68: 93-loo

    Google Scholar 

  • Büdingen HJ, von Reutern GM (1993) Ultraschalldiagnostik der hirnversorgenden Arterien. Thieme, Stuttgart

    Google Scholar 

  • Diehl RR, Diehl B, Sitzer M, Hennerici M (1991) Spontaneous oscillations in cerebral blood flow velocity in normal humans and in patients with carotid artery disease. Neurosci Lett 127: 5–8

    Article  PubMed  CAS  Google Scholar 

  • Aaslid R (1986) Transcranial Doppler Sonography. Springer, Wien, New York

    Google Scholar 

  • Droste DW, Krauss JK (1993) Simultaneous recording of cerebrospinal fluid pressure and middle cerebral artery blood flow velocity in patients with suspected symptomatic normal pressure hydrocephalus. J Neurol Neurosurg Psychiatr 56: 75–79

    Article  PubMed  CAS  Google Scholar 

  • Droste DW, Krauss JK, Berger W, Schuler E, Brown MM (1994) Rhythmic oscillations with a wavelength of o.5–2 min in transcranial Doppler recordings. Acta Neurol Scand 90: 99–104

    Article  PubMed  CAS  Google Scholar 

  • Einhäupl KM, Garner C, Dirnagl U, Schmieder G, Schmiedek P, Kufner G, Rieder J (1986) Oscillations of ICP related to cardiovascular parameters. In: Miller JD, Taesdale GM, Rowan JO, Galbraith SL, Mendelow AD (Hg): Intracranial Pressure VI. Springer, Berlin: pp 290–297

    Google Scholar 

  • Ewing DJ (1992) Analysis of heart rate variability and other non-invasive tests with special reference to diabetes mellitus. In: Bannister R, Mathias CJ (Hg): Autonomic Failure: A textbook of clinical disorders of the autonomic nervous system. Oxford University Press, Oxford: pp 312–333

    Google Scholar 

  • Fernandez de Molina A, Perl ER (1965) Sympathetic activity and the systemic circulation in the spinal cat. J Physiol 181: 82–102

    Google Scholar 

  • Hashimoto M, Higashi S, Kogure Y, Fujii H, Tokuda K, Ito H, Yamamoto S (1989) Respiratory and cardiovascular Oscillations during B-waves. In: Hoff JT, Betz AL (Hg): Intracranial Pressure VII. Springer, Berlin: pp 217–219

    Google Scholar 

  • Higashi S, Yamamoto S, Hashimoto M, Fujii H, Ito H, Kogure Y, Tokuda K (1989) The role of vasomotor center and adrenergic pathway in B-waves. In: Hoff JT, Betz AL (Hg): Intracranial Pressure VII. Springer, Berlin: pp 220–224

    Google Scholar 

  • Huber P, Handa J (1967) Effect of contrast material, hypercapnia, hyperventilation, hypertonic glucose and papaverine on the diameter of the cerebral arteries. Invest Radiol 2: 17–32

    Article  PubMed  CAS  Google Scholar 

  • Karemaker JM (1993) Analysis of blood pressure and heart rate variability: theoretical considerations and clinical applicability. In: Low PA (Hg): Clinical Autonomic Disorders. Little, Brown and Co, Boston: pp 315–330

    Google Scholar 

  • Kuschinsky W, Wahl M (1978) Local chemical and neurogenic regulation of cerebral vascular resistance. Physiol Rev 58: 656–689

    PubMed  CAS  Google Scholar 

  • Lindegaard KF, Lundar T, Wiberg J, Sjoberg D, Aaslid R, Nornes H (1987) Variations of middle cerebral artery blood flow investigated with noninvasive transcranial blood velocity measurements. Stroke 18: 1025–1030

    Article  PubMed  CAS  Google Scholar 

  • Linden D, Diehl RR (1996) Comparison of standard autonomic tests and power spectral analysis in normal adults. Muscle Nerve 19: 556–562

    Article  PubMed  CAS  Google Scholar 

  • Lundberg N (1960) Continuous recordings and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr Neurol Scand 149 (suppl): 1–193

    Google Scholar 

  • Maeda M, Takahashi K, Miyazaki M, Ishii S (1986) The role of the central monoamine system and the cholinoceptive pontine area on the oscillation of ICP “pressure waves”. In: Miller JD, Taesdale GM, Rowan JO, Galbraith SL, Mendelow AD (Hg): Intracranial Pressure VI. Springer, Berlin: pp 151–155

    Google Scholar 

  • Markus H (1995) Importance of time-window overlap in the detection and analysis of embolic signals. Stroke 26: 2044–2047

    Article  PubMed  CAS  Google Scholar 

  • Mautner-Huppert D, Haberl RL, Dirnagl U, Villringer A, Schmiedek P, Einhäupl K (1989) B-waves in healthy persons. Neurol Res 11: 194–196

    PubMed  CAS  Google Scholar 

  • Mayer S (1876) Studien zur Physiologie des Herzens und der Blutgefäße. V. Über spontane Blutdruckschwankungen. Sächs Akad Wiss Sitz Math Naturw 74: 281–307

    Google Scholar 

  • Müller HR, Casty M, Moll R, Zehnder R (1991) Response of middle cerebral artery volume flow to orthostasis. Cerebrovasc Dis 1: 82–89

    Article  Google Scholar 

  • Newell DW, Aaslid R, Lam A, Mayberg TS, Winn HR (1994) Comparison of flow and velocity during dynamic autoregulation testing in humans. Stroke 25: 793–797

    Article  PubMed  CAS  Google Scholar 

  • Newell DW, Aaslid R, Stooss R, Reulen HJ (1992) The relationship of blood flow velocity fluctuations to intracranial pressure B-waves. J Neurosurg 76: 415–421

    Article  PubMed  CAS  Google Scholar 

  • Preis G, Polosa C (1974) Patterns of sympathetic activity associated with Mayer waves. Am J Physiol 266: 724–730

    Google Scholar 

  • Saul JP, Berger RD, Albrecht P, Stein SP, Chen MH, Cohen RJ (1991) Transfer function analysis of the circulation: unique insights into cardiovascular regulation. Am J Physiol 261: H1231 - H1245

    PubMed  CAS  Google Scholar 

  • Thie A, Carvajal-Lizano M, Schlichting U, Spitzer K, Kunze K (1992) Multimodal tests of cerebrovas-cular reactivity in migraine: a transcranial Doppler study. J Neurol 239: 338–342

    Article  PubMed  CAS  Google Scholar 

  • van den Aardweg JG, van Steenwijk RP, Karemaker JM (1995) A chemoreflex model of relation between blood pressure and heart rate in sleep apnea syndrome. Am J Physiol 268: H2145 - H2156

    PubMed  Google Scholar 

  • von Reutern GM, Büdingen HJ (1989) Ultraschalldiagnostik der hirnversorgenden Arterien. Thieme, Stuttgart

    Google Scholar 

  • Wahl M, Schilling L (1993) Regulation of cerebral blood flow–a brief review. Acta Neurochir 59 (Suppl): 3–10

    CAS  Google Scholar 

  • Weise F, Heydenreich F, Runge U (1987) Contributions of sympathetic and vagal mechanisms to the genesis of heart rate fluctuations during orthostatic load: a spectral analysis. J Auton Nery Syst 21: 127–134

    Article  CAS  Google Scholar 

  • Wieling W (1992) Recording of heart rate and blood pressure. In: Bannister R, Mathias CJ (Hg): Autonomic Failure: A textbook of clinical disorders of the autonomic nervous system. Oxford University Press, Oxford: pp 291–311

    Google Scholar 

  • Wieling W, van Lieshout JJ (1993) Maintenance of postural normotension in humans. In: Low PA (Hg): Clinical Autonomic Disorders. Little, Brown and Co, Boston: pp 69–77

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Diehl, R.R., Berlit, P. (1996). Grundlagen der funktionellen Dopplersonographie. In: Funktionelle Dopplersonographie in der Neurologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80284-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80284-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80285-0

  • Online ISBN: 978-3-642-80284-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics