Abstract
‘Error’ and ‘uncertainty’ are two complementary, but distinct, aspects of the characterization of measurements. ‘Error’ is the difference between a measurement result and the value of the measurand while ‘uncertainty’ describes the reliability of the assertion that the stated measurement result represents the value of the measurand. The analysis of error considers the variability of the results when the measurement process is repeated. The evaluation of uncertainty considers the observed data to be given quantities from which the estimates of certain parameters (the measurement results) are to be deduced. The failure to distinguish between these two concepts has led to inconsistency, and a lack of uniformity in the way uncertainties have been expressed. The 1993 ISO (International Organization for Standardization) Guide to the Expression of Uncertainty in Measurements is the first international attempt to establish this uniformity and makes no distinction in the treatment of contributions to the total uncertainty in a measurement result between those arising from “random errors” and those arising from “systematic errors.”
Resume
L’erreur et l’incertitude sont deux aspects complémentaires, mais distincts, de la caractérisation des mesures. L’ «erreur» est la différence entre la mesure résultante et la valeur du mesuré alors que V «incertitude» correspond au bien fondé de l’assertion que le résultat énoncé de la mesure représente bien la valeur de la chose mesurée. L’analyse d’erreur considère la variabilité des résultats lorsque les mesures sont répétées. Pour l’évaluation de l’incertitude, on associe à une donnée observée certaines valeurs dont on soustrait les estimations de certains paramètres (résultat des mesures). Ne pas distinguer clairement ces deux concepts a conduit à une incohérence et à une absence d’uniformité dans l’utilisation des incertitudes. Le «Guide de l’expression de l’incertitude dans les mesures» publiè en 1993 par l’ISO n’introduit aucune distinction dans le traitement des contributions à l’incertitude totale provenant d«’erreurs aléatoires» et celles issues d’erreurs systématiques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
International Vocabulary of Basic and General Terms in Metrology, (2nd edition), International Organization for Standardization [published in the name of BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, OIML] (1993).
Guide to the Expression of Uncertainty in Measurement, International Organization for Standardization [published in the name of BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, OIML] (1993).
Bayes T., An Essay towards Solving a Problem in the Doctrine of Chances, Phil.Trans. Roy. Soc. 53, 370 (1763)
G. A. Barnard, Biometrica, 45, 293 (1958).
Weise K., Woger W., A Bayesian Theory of Measurement Uncertainty, Measurement Science and Technology, 4, 1 (1993).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1996 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Cohen, E.R. (1996). Error and Uncertainty in Physical Measurements. In: Dubois, JE., Gershon, N. (eds) Modeling Complex Data for Creating Information. Data and Knowledge in a Changing World. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80199-0_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-80199-0_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-80201-0
Online ISBN: 978-3-642-80199-0
eBook Packages: Springer Book Archive