Skip to main content

A New Method for Unbiased Comparison of Protein Structures

  • Chapter
Modeling Complex Data for Creating Information

Part of the book series: Data and Knowledge in a Changing World ((DATAKNOWL))

  • 191 Accesses

Abstract

While there exist several excellent algorithms for protein sequence comparison, the comparison of protein structures is more difficult This paper presents a method for a sequence-independent, unbiased comparison of protein structures. The method treats each protein as a collection of a carbons without any regard to sequence or chain-connectivity. Heuristics are used to select a series of subsets of atoms in each of the protein structures. These subsets of atoms are then compared using a subgraph-isomorphism search technique. Partial matches thus obtained are then used to superpose one protein onto the other. A simple scoring function is then used to determine the validity of the match This method has been applied to a set of about 100 diverse proteins. Several proteins known to have similar structures were identified by the method A few protein-pairs not widely recognized to have structural similarities were also identified.

Resume

Alors qu’il existe plusieurs excellents algorithmes pour la comparaison séquentielle des protéines, la comparaison de la structure des protéines est plus difficile. On présente ici une méthode indépendante des séquences pour une comparaison impartiale de la structure des protéines. La méthode considére chaque protéine comme un ensemble d’α-carbones, sans aucune considération séquentielle ou de connectivité de chaine. Des procédures heuristiques sont employées pour sélectionner des séries de sous-groupes d’atomes dans les structures de protéines. Ces sous-groupes d’atomes sont ensuite comparés entre eux par une technique de recherche d’isomorphisme des sous-graphes. Des concordances partielles ainsi obtenues sont ensuite utilisées pour superposer une protéine sur une autre. Une simple fonction de pondération est ensuite utilisée pour apprécier la valeur de la concordance. Cette méthode à été appliquée à une population d’une centaine de protéines variées. Plusieurs protéines ayant des structures similaires connues ont été identifiées par cette méthode. Quelques paires de protéines, en général sans reconnaissance universelle de leurs similarités structurelles, ont aussi été identifiées.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shoichet B.K, Kuntz I.D., Protein docking and complementarity, J. Mol. Biol. 221, 327–346 (1991)

    Article  CAS  Google Scholar 

  2. Jiang F., Kim S-H.K., Soft docking: Matching of molecular surface cubes, J. Mol. Biol. 219, 97–102 (1991)

    Google Scholar 

  3. Mitchell E.M., Artymiuk P.J., Rice D.W., Willett P., Use of techniques derived from graph theory to compare secondary structure motifs in proteins, J. Mol. Biol. 212, 151–166. (1989)

    Article  Google Scholar 

  4. Vriend G., Sander C., Detection of Common Three-Dimensional Substructures in Proteins, Proteins: Structure, Function and Genetics 11, 52–58 (1991)

    Article  CAS  Google Scholar 

  5. Alexandrov N.N., Takahashi K., Go N., Common Spatial Arrangements of Backbone Fragments in Homologous and Non-homologous Proteins, J. Mol. Biol. 225 5–9 (1992)

    Article  CAS  Google Scholar 

  6. Fischer D., Norel R., Wolfson H., Nussinov R., Surface Motifs by a Computer Vision Technique: Searches, Detection, and Implications for Protein-Ligand Interactions, PROTEINS: Str. Funct. and Genetics. 126, 278–292 (1993)

    Article  Google Scholar 

  7. May A.C.W., Johnson M.S., Protein structure comparisons using a combination of a genetic algorithm, dynamic programming and least-squares minimization, Protein Engineering. 7, (4) 475–485 (1994)

    Article  CAS  Google Scholar 

  8. Kuhl F.S, Crippen G.M., Friesen D.J., A Combinatorial Algorithm for Calculating Ligand Binding, J. Comput. Chem. 5 (1) 24–34 (1984)

    Article  CAS  Google Scholar 

  9. Boberg J., Salakoski T., Vihinen M., Selection of a Representative Set of Structures From Brookhaven Protein Data Bank; Proteins: Structure, Function and Genetics 14, 265–276 (1992)

    Article  CAS  Google Scholar 

  10. Subbaiah S., Laurents D.V., Levitt M., Structural similarity of DNA-Binding domains of bacteriophage repressors and the globin core, Current Biol. 3 (3), 141–147 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nilakantan, R., Venkataraghavan, R. (1996). A New Method for Unbiased Comparison of Protein Structures. In: Dubois, JE., Gershon, N. (eds) Modeling Complex Data for Creating Information. Data and Knowledge in a Changing World. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80199-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80199-0_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80201-0

  • Online ISBN: 978-3-642-80199-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics