Skip to main content

Entry of Mycobacterium tuberculosis into Mononuclear Phagocytes

  • Chapter
Tuberculosis

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 215))

Abstract

Mycobacterium tuberculosis is one of a diverse group of intracellular pathogens that survives the process of entry into mammalian cells. Multiplication within the cell is critical for the pathogenesis of disease by these host-adapted microbes. For M. tuberculosis, the major host cell reservoir is the mononuclear phagocyte, including both monocytes and macrophages. These cells, along with polymorphonuclear leukocytes, are considered professional phagocytes in that they have adapted specifically to engulf and destroy bacteria or other foreign particulate matter. Given the potent microbiocidal mechanisms that these cells possess, M. tuberculosis has adapted strategies to circumvent adverse host cellular responses during and after entry. The earliest interaction between M. tuberculosis and the mononuclear phagocyte is binding of the bacterium to the cell surface and subsequent internalization. Specific receptor-ligand interactions mediate this internalization and the outcome of one interaction may be different than the outcome of another (Fig. 1). For example, it can be only attachment of the bacterium, which for M. tuberculosis may be less important for disease pathogenesis, or it can be ingestion (phagocytosis), which in turn can lead to either intracellular survival or death of the bacterium. Recent studies provide evidence for the importance of specific receptor-ligand pathways (single or multiple) and cooperativity between receptors in dictating the fate of phagocytosed intracellular pathogens (Joiner et al. 1990; Mosser and Edelson 1987; Drevets et al. 1992; Hoepelman and Tuomanen 1992; Hieny et al. 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abou-Zeid C, Ratliff TL, Wiker HG, Harboe M, Bennedsen J, Rook GAW (1988) Characterization of fibronectin-binding antigens released by Mycobacterium tuberculosis and Mycobacterium bovis BCG. Infect Immun 56: 3046–3051

    PubMed  CAS  Google Scholar 

  • Abramson SL, Gallin JI (1990) IL-4 inhibits superoxide production by human mononuclear phagocytes. J Immunol 144: 625–630

    PubMed  CAS  Google Scholar 

  • Aderem AA, Wright SD, Silverstein SC, Cohn ZA (1985) Ligated complement receptors do not activate the arachidonic acid cascade in resident peritoneal macrophages. J Exp Med 161: 617–622

    Article  PubMed  CAS  Google Scholar 

  • Armstrong JA, Hart PD (1971) Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J Exp Med 134: 713–740

    Article  PubMed  CAS  Google Scholar 

  • Armstrong JA, Hart PD (1975) Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli: reversal of the usual nonfusion pattern and observations on bacterial survial. J Exp Med 142: 1–16

    Article  PubMed  CAS  Google Scholar 

  • Arnaout MA (1990) Structure and function of the leukocyte adhesion molecules CD11/CD18. Blood 75: 1037–1050

    PubMed  CAS  Google Scholar 

  • Arruda S, Bomfim G, Knights R, Huima-Byron T, Riley LW (1993) Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science 261: 1454–1457

    Article  PubMed  CAS  Google Scholar 

  • Aslanzadeh J, Brown EJ, Quillin SP, Ritchey JK, Ratliff TL (1989) Characterization of soluble fibronectin binding to Bacille Calmette-Gurin. J Gen Microbiol 135: 2735–2741

    PubMed  CAS  Google Scholar 

  • Bardana EJ Jr, McClatchy JK, Farr RS, Minden P (1973) Universal occurrence of antibodies to tubercle bacilli in sera from non-tuberculous and tuberculous individuals. Clin Exp Immunol 13: 65–77

    PubMed  Google Scholar 

  • Barnes PF, Chatterjee D, Abrams JS, Lu S, Wang E, Yamamura M, Brennan PJ, Modlin RL (1992) Cytokine production induced by Mycobacterium tuberculosis lipoarabinomannan: Relationship to chemical structure. J Immunol 149: 541–547

    PubMed  CAS  Google Scholar 

  • Bermudez LE, Young LS, Enkel H (1991) Interaction of Mycobacterium avium complex with human macrophages: roles of membrane receptors and serum proteins. Infect Immun 59: 1697–1702

    PubMed  CAS  Google Scholar 

  • Bevilacque MP, Amrani D, Musesson MW, Bianco C (1981) Receptors for cold-insoluble globulin (plasma fibronectin) on human monocytes. J Exp Med 153: 42–60

    Article  Google Scholar 

  • Birdi TJ, Mistry NF, Mahadevan PR, Antia NH (1983) Alterations in the membrane of macrophages from leprosy patients. Infect Immun 41: 121–127

    PubMed  CAS  Google Scholar 

  • Blackwell J, Ezekowitz RAB, Roberts MB, Channon JY, Sim RB, Gordon S (1985) Macrophage complement and lectin-like receptors bind Leishmania in the absence of serum. J Exp Med 162: 324–331

    Article  PubMed  CAS  Google Scholar 

  • Blair AL, Cree IA, Beck JS, Grange JM, Kardjito T (1993) Heat-stable opsonins in tuberculosis and leprosy. FEMS Immunol Med Microbiol 7: 197–204

    Article  PubMed  CAS  Google Scholar 

  • Bobak DA, Gaither TA, Frank MM, Tenner AJ (1987) Modulation of FcR function by complement: subunit Clq enhances the phagocytosis of IgG-opsonized targets by human monocytes and culture-derived macrophages. J Immunol 138: 1150–1156

    PubMed  CAS  Google Scholar 

  • Bohnsack JF, O’shea JJ, Takahashi T, Brown EJ (1985) Fibronectin-enhanced phagocytosis of an alternative pathway activator of human culture-derived macrophages is mediated by the C4b/C3b complement receptor (CR1). J Immunol 135: 2680–2686

    PubMed  CAS  Google Scholar 

  • Brozna JP, Horan M, Rademacher JM, Pabst KA, Pabst MJ (1991) Monocyte responses to sulfatide from Mycobacterium tuberculosis: inhibition of priming for enhanced release of superoxide, associated with increased secretion of interleukin-1 and tumor necrosis factor alpha, and altered protein phosphorylation. Infect Immun 59: 2542–2548

    PubMed  CAS  Google Scholar 

  • Bullock WE, Wright SD (1987) Role of the adherence-promoting receptors, CR3, LEA-1, and p150,95, in binding of Histoplasma capsulatum by human macrophages. J Exp Med 165: 195–210

    Article  PubMed  CAS  Google Scholar 

  • Byrd SR,Gellber R,Bermudez LE(1993) Roles of the adherence-promoting receptors, CR2,LFA-1, and p 150, 95,in binding of Mycobacterium leprae to nasal epithelial cells. Clin Immunol Immunopathol 69: 266–271

    Article  PubMed  CAS  Google Scholar 

  • Cain JA, Newman SL, Ross GD (1987) Role of complement receptor type three and serum opsonins in the neutorphil response to yeast. Complement 4: 75–86

    PubMed  CAS  Google Scholar 

  • Catanzaro A, Wright SD (1990) Binding of Mycobacterium avium-intracellulare to human leukocytes. Infect Immun 58: 2951–2956

    PubMed  CAS  Google Scholar 

  • Chan J, Fujiwara T, Brennan P, McNeil M, Turco SJ, Sibille J-C, Snapper M, Aisen P, Bloom BR (1989) Microbial glycolipids: possible virulence factors that scavenge oxygen radicals. Proc Natl Acad Sci USA 86: 2453–2457

    Article  PubMed  CAS  Google Scholar 

  • Chan J, Fan X, Hunter SW, Brennan PJ, Bloom BR (1991) Lipoarabinomannan, a possible virulence factor involved in persistence of Mycobacterium tuberculosis within macrophages. Infect Immun 59: 1755–1761

    PubMed  CAS  Google Scholar 

  • Chatterjee D, Hunter SW, McNeil M, Brennan PJ (1992a) Lipoarabinomannan. Multiglycosylated form of the mycobacterial mannosylphosphatidylinositols. J Biol Chem 267: 6228–6233

    PubMed  CAS  Google Scholar 

  • Chatterjee D, Lowell K, Rivoire B, McNeil MR, Brennan PJ (1992b) Lipoarabinomannan of Mycobacterium tuberculosis. Capping with mannosyl residues in some strains. J Biol Chem 267: 6234–6239

    PubMed  CAS  Google Scholar 

  • Chatterjee D, Roberts AD, Lowell K, Brennan PJ, Orme IM (1992c) Structural basis of capacity of lipoarabinomannan to induce secretion of tumor necrosis factor. Infect Immun 60: 1249–1253

    PubMed  CAS  Google Scholar 

  • Chatterjee D, Khoo K-H, McNeil MR, Dell A, Morris HR, Brennan PJ (1993) Structural definition of the non-reducing termini of mannose-capped LAM from Mycobacterium tuberculosis through selective enzymatic degradation and fast atom bombardment-mass spectrometry. Glycobiology 3: 497–506

    Article  PubMed  CAS  Google Scholar 

  • Czop JK, Kay J (1991) Isolation and characterization of ß-glucan receptors on human mononuclear phagocytes. J Exp Med 173: 1511–1520

    Article  PubMed  CAS  Google Scholar 

  • Da Silva RP, Hall BF, Joiner KA, Sacks DL (1989) CR1, the C3b receptor, mediates binding of infective Leishmania major metacylic promastigotes to human macrophages. J Immunol 143: 617–622

    PubMed  Google Scholar 

  • De Chastellier C, Frehel C, Offredo C, Skamene E (1993) Implication of phagosome-lysosome fusion in restriction of Mycobacterium avium growth in bone marrow macrophages from genetically resistant mice. Infect Immun 61: 3775–3784

    PubMed  Google Scholar 

  • Denis M, Forget A, Pelletier M, Turcotte R, Skamene E (1986) Control of the Bcg gene on early resistance in mice to infections with BCG substrains and atypical mycobacteria. Clin Exp Immunol 63: 517–525

    PubMed  CAS  Google Scholar 

  • Douvas GS, Looker DL, Vetter AE, Crowle AJ (1985) Gamma interferon activates human macrophages to become tumoricidal and leishmanicidal but enhances replication of macrophage-associated mycobacteria. Infect Immun 50: 1–8

    PubMed  CAS  Google Scholar 

  • Douves GS, Berger EM, Repine JE, Crowle AJ (1986) Natural mycobacteriostatic activity in human monocyte-derived adherent cells. Am Rev Respir Dis 134: 44–48

    Google Scholar 

  • Drevets DA, Campbell PA (1991) Roles of complement and complement receptor type 3 in phagocytosis of Listeria monocytogenes by inflammatory mouse peritoneal macrophages. Infect Immun 59: 2645–2652

    PubMed  CAS  Google Scholar 

  • Drevets DA, Canono BP, Campbell PA (1992) Listericidal and nonlistericidal mouse macrophages differ in complement receptor type 3-mediated phagocytosis of L. monocytogenes and in preventing escape of the bacteria into the cytoplasm. J Leukoc Biol 52: 70–79

    PubMed  CAS  Google Scholar 

  • Eissenberg LG, Goldman WE (1987) Histoplasma capsulatum fails to trigger release of superoxide from macrophages. Infect Immun 55: 29–34

    PubMed  CAS  Google Scholar 

  • Elstad MR, Parker CJ, Cowley FS, Wilcox LA, McIntyre TM, Prescott SM, Zimmerman GA (1994) CD11b/CD18 integrin and a 3-glucan receptor act in concert to induce the synthesis of platelet-activating factor by monocytes. J Immunol 152: 220–230

    PubMed  CAS  Google Scholar 

  • Esparza I, Fox RI, Schreiber RD (1986) Interferon-y-dependent modulation of C3b receptors (CR1) on human peripheral blood monocytes. J Immunol 136: 1360–1365

    PubMed  CAS  Google Scholar 

  • Espitia C, Sciutto E, Bottasso O, Gonzlez-Amaro R, Hernndez-Pando R, Mancilla R (1992) High antibody levels to the mycobacterial fibronectin-binding antigen of 30–31 kD in tuberculosis and lepromatous leprosy. Clin Exp Immunol 87: 362–367

    Article  PubMed  CAS  Google Scholar 

  • Ezekowitz RAB, Sim RB, Hill M, Gordon S (1983) Local opsonization by secreted macrophage complement components: role of preceptors for complement in uptake of zymosan. J Exp Med 159: 244–260

    Article  Google Scholar 

  • Fels A, Cohn ZA (1986) The alveolar macrophage. J Appl Physiol 60: 353–369

    PubMed  CAS  Google Scholar 

  • Firestein GS, Zvaifler NJ (1987) Down regulation of human monocyte differentiation antigens by interferon-y. Cell Immunol 104: 343–354

    Article  PubMed  CAS  Google Scholar 

  • Forget A, Benoit JC, Turcotte R, Gusew-Chartrand N (1976) Enhanced activity of anti-mycobacterial sera in experimental Mycobacterium bovis ( BCG) infection in mice. Infect Immun 13: 1301–1306

    PubMed  CAS  Google Scholar 

  • Gangadharam PRJ, Edwards CK, Ill (1984) Release of superoxide anion from resident and activated mouse peritoneal macrophages infected with Mycobacterium intracellulare. Am Rev Respir Dis 130: 834–838

    CAS  Google Scholar 

  • Gaynor CD, Schlesinger LS (1994) Pulmonary surfactant protein A enhances adherence of Mycobacterium tuberculosis by human macrophages: evidence for a direct SP-A macrophage interaction. Clin Res 42: 301A

    Google Scholar 

  • Haagsman HP (1994) Surfactant proteins A and D. Biochem Soc Trans 22: 100–106

    PubMed  CAS  Google Scholar 

  • Hall BF, Joiner KA (1991) Strategies of obligate intracellular parasites for evading host defences. Parasitol Today 7: A22 - A27

    Article  Google Scholar 

  • Hancock GE, Cohn ZA, Kaplan G (1989) The generation of antigen-specific, major histocompatibility complex-restricted cytotoxic T lymphocytes of the CD4+ phenotype: Enhancement by the cutaneous administration of interleukin 2. J Exp Med 169: 909–919

    Article  PubMed  CAS  Google Scholar 

  • Hieny S, Da Silva RP, Sher A (1992) Complement enhances the survival of metacyclic trypomastigotes of Trypanosome cruzi in mouse peritoneal macrophages. FASER J 2: A678

    Google Scholar 

  • Hirsch CS, Ellner JJ, Russell DG, Rich EA (1994) Complement receptor-mediated uptake and tumor necrosis factor-a-mediated growth inhibition of Mycobacterium tuberculosis by human alveolar macrophages. J Immunol 152: 743–753

    PubMed  CAS  Google Scholar 

  • Hoepelman AIM, Tuomanen El (1992) Consequences of microbial attachment: Directing host cell functions with adhesins. Infect Immun 60: 1729–1733

    PubMed  CAS  Google Scholar 

  • Hoffman OA, Standing JE, Limper AH (1993) Pneumocystis carinii stimulates tumor necrosis factor-a release from alveolar macrophages through a 13-glucanmediated mechanism. J Immunol 150: 3932–3940

    PubMed  CAS  Google Scholar 

  • Hogg N, Takacs L, Palmer DG, Selvendran Y, Allen C (1986) The p150,95 molecule is a marker of human mononuclear phagocytes: comparison with expression of class II molecules. Eur J Immunol 16: 240–248

    Article  PubMed  CAS  Google Scholar 

  • Holzer TJ, Nelson KE, Schauf V, Crispen RG, Anderson BR (1986) Mycobacterium leprae fails to stimulate Phagocytic cell superoxide anion generation. Infect Immun 51: 514–520

    PubMed  CAS  Google Scholar 

  • Horwitz MA (1988) Intracellular parasitism. Curr Opin Immunol 1: 41–46

    Article  PubMed  CAS  Google Scholar 

  • Hunter SW, Brennan PJ (1990) Evidence for the presence of a phosphatidylinositol anchor on the lipoarabinomannan and lipomannan of Mycobacterium tuberculosis. J Biol Chem 265: 9272–9279

    PubMed  CAS  Google Scholar 

  • Jacobs RF, Locksley RM, Wilson CB, Hass JE, Klebanoff SJ (1984) Interaction of primate alveolar macrophages and Legionella pneumophila. J Clin Invest 73: 1515–1520

    Article  PubMed  CAS  Google Scholar 

  • Johnson WD Jr, Mei B, Cohn ZA (1977) The separation, long-term cultivation, and maturation of the humman monocyte. J Exp Med 146: 1613–1626

    Article  PubMed  CAS  Google Scholar 

  • Joiner KA, Fuhrman SA, Miettinen HM, Kasper LH, Mellman I (1990) Toxoplasma gondii: fusion competencee of parasitophorous vacuoles in Fc receptor-transfected fibroblasts. Science 249: 641–646

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto TK, Larsen RS, Corbi AL, Dustin ML, Staunton DE, Springer TA (1989) The leukocyte integrins: LEA-1, Mac-1, and p150,95. Adv Immunol 46: 149–182

    Article  PubMed  CAS  Google Scholar 

  • Lanier LL, Arnaout MA, Schwarting R, Warner NL, Ross GD (1985) P150,95, third member of the LFA1/CR3 polypeptide family identified by anti-Leu-M5 monoclonal antibody. Eur J Immunol 15: 713–718

    Article  PubMed  CAS  Google Scholar 

  • Larsen RS, Corbi AL, Berman L, Springer TA (1989) Primary structure of the LEA-1a subunit: an integrin with an embedded domain defining a protein superfamily. J Cell Biol 108: 703–712

    Article  Google Scholar 

  • Launois P, Blum L, Dieye A, Milian J, Sarthou JL, Bach MA (1989) Phenolic glycoplid-1 from M. leprae inhibits oxygen free radical production by human mononuclear cells. Res Immunol 140: 847–855

    Article  PubMed  CAS  Google Scholar 

  • Launois P, Niang M, Dieye A, Sarthou J-L, Rivier F, Milian J (1992) Human phagocyte respiratory burst by Mycobacterium bovis BCG and M. leprae: Functional activation by BCG is mediated by complement and its receptors on monocytes. Int J Lepr Other Mycobact Dis 60: 225–233

    Google Scholar 

  • Lopez Ramirez GM, Rom WN, Ciotoli C, Talbot A, Martiniuk F, Cronstein B, Reibman J (1994) Mycobacterium tuberculosis alters expression of adhesion molecules on monocytic cells. Infect Immun 62: 2515–2520

    Google Scholar 

  • Mariano M, Nikitin T, Malucelli BE (1977) Phagocytic potential of macrophages from within delayed hypersensitivity-mediated granulomata. J Pathol 123: 27–33

    Article  PubMed  CAS  Google Scholar 

  • Maxwell KW, Marcus S (1968) Phagocytosis and intracellular fate of Mycobacterium tuberculosis: in vitro studies with guinea pig peritoneal and alveolar mononuclear phagocytes. J Immunol 101: 176–182

    PubMed  CAS  Google Scholar 

  • May ME, Spagnuolo PJ (1987) Evidence for activation of a respiratory burst in the interaction of human neutrophils with Mycobacterium tuberculosis. Infect Immun 55: 2304–2307

    PubMed  CAS  Google Scholar 

  • McCabe RE, Mullins BT (1990) Failure of Trypanosome cruzi to trigger the respiratory burst of activated macrophages. Mechanism for immune evasion and importance of oxygen-independent killing. J Immunol 144: 2384–2388

    Google Scholar 

  • McConville MJ, Thomas-Oates JE, Ferguson MAJ, Homans SW (19901 Structure of the lipophosphoglycan from Leishmania major. J Biol Chem 265: 1961 1–19623

    Google Scholar 

  • Mokoena T, Gordon S (1987) Human macrophage activation: modulation of mannosyl, fucosyl receptor activity in vitro by lymphokines, ‘y and a interferons, and dexamethasone. J Clin Invest 75: 624–631

    Article  Google Scholar 

  • Moreno C, Taverne J, Mehlert A, Bate CAW, Brealey RJ, Meager A, Rook GAW, Playfair JHL (1989) Lipoarabinomannan from Mycobacterium tuberculosis induces the production of tumour necrosis factor from human and murine macrophages. Clin Exp Immunol 76: 240–245

    PubMed  CAS  Google Scholar 

  • Mosser DM, Edelson PJ (1985) The mouse macrophage receptor for C3bi (CR3) is a major mechanism in the phagocytosis of Leishmania promastigotes. J Immunol 135: 2785–2789

    PubMed  CAS  Google Scholar 

  • Mosser DM, Edelson PJ (1987) The third component of complement (C3) is responsible for the intracellular survival of Leishmanie major. Nature 327: 329–331

    Article  PubMed  Google Scholar 

  • Mosser DM, Handman E (1992) Treatment of murine macrophages with interferon-y inhibits their ability to bind Leishmania promastigotes. J Leukocyte Biol 52: 369–376

    PubMed  CAS  Google Scholar 

  • Mosser DM, Vlassara H, Edelson PJ, Cerami A (1987) Leishmania promastigotes are recognized by the macrophage receptor for advanced glycosylation endproducts. J Exp Med 165: 140–145

    Article  PubMed  CAS  Google Scholar 

  • Mosser DM, Springer TA, Diamond MS (1992) Leishmania promastigotes require opsonic complement to bind to the human leukocyte integrin Mac-1 (CD11b/CD18). J Cell Biol 116: 511–520

    Article  PubMed  CAS  Google Scholar 

  • Myones BL, Dalzell JG, Hogg N, Ross GD, (1988) Neutrophil and monocyte cell surface p150,955 has iC3b-receptor (CR4) activity resembling CR3. J Clin Invest 82: 640–651

    Article  PubMed  CAS  Google Scholar 

  • Nakagawara A, Nathan CF, Cohn ZA (1981) Hydrogen peroxide metabolism in human monocytes during differentiation in vitro. J Clin Invest 68: 1243–1252

    Article  PubMed  CAS  Google Scholar 

  • Neill MA, Klebanoff SJ (1988) The effect of phenolic glycolipid 1 from Mycobacterium leprae on the antimicrobial activity of human macrophages. J Exp Med 167: 30–42

    Article  PubMed  CAS  Google Scholar 

  • Newman SL, Musson RA, Henson PM (1980) Development of functional complement receptors during in vitro maturation of human monocytes into macrophages. J Immunol 125: 2236–2244

    PubMed  CAS  Google Scholar 

  • Newman SL, Bocher C, Rhodes J, Bullock WE (1990) Phagocytosis of Histoplasma capsulatum yeasts and microconidia by human cultured macrophages and alveolar macrophages. Cellular cytoskeleton requirement for attachment and ingestion. J Clin Invest 85: 223–230

    Article  PubMed  CAS  Google Scholar 

  • Nicolacakis K, Toossi Z, Rich EA (1994) Activation of human immunodeficiency virus-1 in alveolar macrophages from patients with acquired immunodeficiency syndrome by Mycobacterium tuberculosis. Clin Res 42: 157A

    Google Scholar 

  • Olafson RW, Thomas JR, Ferguson MAJ, Dwek RA, Chaudhuri M, Chang K-P, Rademacher TIN (1990) Structures of the N-linked oiligosaccharides of gp63, the major surface glycoprotein, from Leishmania mexicana amazonensis. J Biol Chem 265: 12240–12247

    PubMed  CAS  Google Scholar 

  • Ota T, Okubo Y, Sekiguchi M (1990) Analysis of immunologic mechanisms of high natural killer cell activity in tuberculosis pleural effusions. Am Rev Respir Dis 142: 29–33

    PubMed  CAS  Google Scholar 

  • Pabst JJ, Gross JM, Prozna JP, Goren MB (1988) Inhibition of macrophage priming by sulfatide from Mycobacterium tuberculosis. J Immunol 140: 634–640

    PubMed  CAS  Google Scholar 

  • Palmer S, Hamblin AS (1993) Increased CD11/CD18 expression on the peripheral blood leucocytes of patients with HIV disease: relationship to disease severity. Clin Exp Immunol 93: 344–349

    Article  PubMed  CAS  Google Scholar 

  • Payne N, Horwitz MA (1987) Phagocytosis of Legionella pneumophila is mediated by human monocyte complement receptors. J Exp Med 166: 1377–1389

    Article  PubMed  CAS  Google Scholar 

  • Petty HR, Todd RF, Ill (1993) Receptor-receptor interactions of complement receptor type 3 in neutrophil membranes. J Leukoc Biol 54: 492–494

    CAS  Google Scholar 

  • Phelps DS, Rose RM (1991) Increased recovery of surfactant protein A in AIDS-related pneumonia. Am Rev Respir Dis 143: 1072–1075

    PubMed  CAS  Google Scholar 

  • Pommier CG, Inada S, Fries LF, Takahashi T, Frank MM, Brown EJ (1983) Plasma fibronectin enhances phagocytosis of opsonized particles by human peripheral blood monocytes. J Exp Med 157: 1844–1854

    Article  PubMed  CAS  Google Scholar 

  • Prinzis S, Chatterjee D, Brennan PJ (1993) Structure and antigenicity of lipoarabinomannan from Mycobacterium bovis BCG. J Gen Microbiol 139: 2649–2658

    PubMed  CAS  Google Scholar 

  • Ramanathan VD, Curtis J, Turk JL (1980) Activation of the alternative pathway of complement by mycobacteria and cord factor. Infect Immun 29: 30–35

    PubMed  CAS  Google Scholar 

  • Rao SP, Gehlsen KR, Catanzaro A (1992) Identification of a131 integrin on Mycobacterium aviumMycobacterium intracellulare. Infect Immun 60: 3652–3657

    PubMed  CAS  Google Scholar 

  • Rao SP, Ogata K, Catanzaro A (1993) Mycobacterium avium-M. intracellulare binds to the integrin receptor avß3 On human monocytes and monocyte-derived macrophages. Infect Immun 61: 663–670

    PubMed  CAS  Google Scholar 

  • Rao SP, Ogata K, Morris SL, Catanzaro A (1994) Identification of a 68 kd surface antigen of Mycobacterium avium that binds to human macrophages. J Lab Clin Med 123: 526–535

    PubMed  CAS  Google Scholar 

  • Ratliff TL, McGarr JA, Abou-Zeid C, Rook GAW, Stanford JL, Aslanzadeh J, Brown EJ (1988) Attachment of mycobacteria to fibronectin-coated surfaces. J Gen Microbiol 134: 1307–1313

    PubMed  CAS  Google Scholar 

  • Reyes JM, Putong PB (1980) Association of pulmonary alveolar lipoproteinosis with mycobacterial infection. Am J Clin Pathol 74: 478–485

    PubMed  CAS  Google Scholar 

  • Roach TIA, Barton CH, Chatterjee D, Blackwell JM (1993) Macrophage activation: Lipoarabinomannan from avirulent and virulent strains of Mycrobacterium tuberculosis differentially induces the early genes c-fos, KC, JE and tumor necrosis factor-a. J Immunol 150: 1886–1896

    PubMed  CAS  Google Scholar 

  • Roach TIA, Chatterjee D, Blackwell JM (1994) Induction of early-response genes KC and JE by mycobacterial lipoarabinomannans: regulation of KC expression in murine macrophages by Lsh/lty/ Bcg (candidate Nramp). Infect Immun 62: 1176–1184

    PubMed  CAS  Google Scholar 

  • Robledo S, Wozencraft A, Valencia AZ, Saravia N (1994) Human monocyte infection by Leishmania (Viannia) panamensis: role of complement receptors and correlation of susceptibility in vitro with clinical phenotype. J Immunol 152: 1265–1276

    PubMed  CAS  Google Scholar 

  • Roecklein JA, Swartz RP, Yeager H Jr (1992) Nonopsonic uptake of Mycobacterium avium complex by human monocytes and alveolar macrophages. J Lab Clin Med 119: 772–781

    PubMed  CAS  Google Scholar 

  • Ross GD (1986) Opsonization and membrane complement receptors. In: Ross GD (ed) Immunobiology of the complement system. Academic, Orlando, pp 87–114

    Google Scholar 

  • Ross GD, Cain JA, Myones BL, Newman SL, Lachmann PJ (1987) Specificity of membrane complement receptor type three (CR3) for B-glucans. Complement 4: 61–74

    PubMed  CAS  Google Scholar 

  • Russell DG, Talamas-Rohana P (1989) Leishmania and the macrophage: a marriage of inconvenience. Immunol Today 10: 328–333

    Article  PubMed  CAS  Google Scholar 

  • Sampson LL, Heuser J, Brown EJ (1991) Cytokine regulation of complement receptor-mediated ingestion by mouse peritoneal macrophages. J Immunol 146: 1005–1013

    PubMed  CAS  Google Scholar 

  • Scales WE, Chensue SW, Otterness I, Kunkel SL (1989) Regulation of monokine gene expression: prostaglandin E2 suppresses tumor necrosis factor but not interleukin-1a or ß mRNA and cell-associated bioactivity. J Leukoc Biol 45: 416–421

    PubMed  CAS  Google Scholar 

  • Schlesinger LS (1992) Roles of complement receptors, the mannosyl-fucosyl receptor, and pulmonary surfactant protein, SP-A in phagocytosis of Mycobacterium tuberculosis by human macrophages. Clin Res 40: 383A

    Google Scholar 

  • Schlesinger LS (1993) Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J Immunol 150: 2920–2930

    PubMed  CAS  Google Scholar 

  • Schlesinger LS, Horwitz MA (1990) Phagocytosis of leprosy bacilli is mediated by complement receptors CR1 and CR3 on human monocytes and complement component C3 in serum. J Clin Invest 85: 1304–1314

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger LS, Horwitz MA (1991a) Phagocytosis of Mycobacterium leprae by human monocyte-derived macrophages is mediated by complement receptors CR1(CD35), CR3(CD11b/CD18), and CR4(CD11c/CD18) and interferony activation inhibits complement receptor function and phagocytosis of the bacterium. J Immunol 147: 1983–1994

    PubMed  CAS  Google Scholar 

  • Schlesinger LS, Horwitz MA (1991b) Phenolic glycolipid-1 of Mycobacterium leprae binds complement component C3 in serum and mediates phagocytosis by human monocytes. J Exp Med 174: 1031–1038

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger LS, Horwitz MA (1994) A role for natural antibody in the pathogeneiss of leprosy: antibody in nonimmune serum mediates C3 fixation to the Mycobacterium leprae surface and hence phagocytosis by human mononuclear phagocytes. Infect Immun 62: 280–289

    PubMed  CAS  Google Scholar 

  • Schlesinger LS, Bellinger-Kawahara CG, Payne NR, Horwitz MA (1990) Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3. J Immunol 144: 2771–2780

    PubMed  CAS  Google Scholar 

  • Schlesinger LS, Hull SR, Kaufman TM (1994) Binding of the terminal mannosyl units of lipoarabinomannan from a virulent strain of Mycobacterium tuberculosis to human macrophages. J Immunol 152: 4070–4079

    PubMed  CAS  Google Scholar 

  • Schreiber S, Perkins SL, Teitelbaum SL, Chappel J, Stahl PD, Blum JS (1993) Regulation of mouse bone marrow macrophage mannose receptor expression and activation by prostaglandin E and IFN-y. J Immunol 151: 4973–4981

    CAS  Google Scholar 

  • Schwarting R, Stein H, Wang CY (1985) The monoclonal antibodies anti-S-HCL 1 (anti-Leu-14) and anti S-HCL 3 (anti-Leu-M5) allow the diagnosis of hairy cell leukemia. Blood 65: 974–983

    PubMed  CAS  Google Scholar 

  • Shakoor Z, Hamblin AS (1992) Increased CD11/CD18 expression on peripheral blood leucocytes of patients with sarcoidosis. Clin Exp Immunol 90: 99–105

    Article  PubMed  CAS  Google Scholar 

  • Shattock RJ, Friedland JS, Griffin GE (1994) Phagocytosis of Mycobacterium tuberculosis modulates human immunodeficiency virus replication in human monocytic cells. J Gen Virol 75: 849–856

    Article  PubMed  CAS  Google Scholar 

  • Shepherd VL, Campbell EJ, Senior RM, Stahl PD (1982) Characterization of mannose/fucose receptor on human mononuclear phagocytes. J Reticul Soc 32: 423–431

    CAS  Google Scholar 

  • Shiratsuchi H, Johnson JL, Toossi Z, Ellner JJ (1994) Modulation of the effector function of human monocytes for Mycobacterium avium by human immunodeficiency virus-1 envelope glycoprotein gp120. J Clin Invest 93: 885–891

    Article  PubMed  CAS  Google Scholar 

  • Sibley LD, Hunter SW, Brennan PJ, Krahenbuhl JL (1988) Mycobacterial lipoarabinomannan inhibitsy interferon-mediated activation of macrophages. Infect Immun 56: 1232–1236

    PubMed  CAS  Google Scholar 

  • Speert DP, Silverstein SC (1985) Phagocytosis of unopsonized zymosan by human monocyte-derived macrophages: maturation and inhibition by mannan. J Leukoc Biol 38: 655–658

    PubMed  CAS  Google Scholar 

  • Stahl PD (1992) The mannose receptor and other macrophage lectins. Curr Opin Immunol 4: 49–52

    Article  PubMed  CAS  Google Scholar 

  • Stein M, Keshav S, Harris N, Gordon S (1992) Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 176: 287–292

    Article  PubMed  CAS  Google Scholar 

  • Stokes RW, Heidi ID, Jefferies WA, Speert DP (1993) Mycobacteria-macrophage interactions: macrophage phenotype determines the nonopsonic binding of Mycobacterium tuberculosis to murine macrophages. J Immunol 151: 7067–7076

    PubMed  CAS  Google Scholar 

  • Swartz RP, Neal D, Vogel CW, Yeager H Jr (1988) Differences in uptake of mycobacteria by human monocytes: a role for complement. Infect Immun 56: 2223–2227

    PubMed  CAS  Google Scholar 

  • Taylor ME, Conary JT, Lennartz MR, Stahl PD, Drickamer K (1990) Primary structure of the mannose receptor contains multiple motifs resembling carbohydrate-recognition domains. J Biol Chem 265: 12156–12162

    PubMed  CAS  Google Scholar 

  • Tenner AJ, Robinson SL, Borchelt J, Wright JR (1989) Human pulmonary surfactant protein (SP-A), a protein structurally homologous to C1q, can enhance FcR- and CR1-mediated phagocytosis. J Biol Chem 264: 13923–13928

    PubMed  CAS  Google Scholar 

  • Thomas JR, McConville MJ, Thomas-Oates JE, Homans SW, Ferguson MAJ, Gorin PAJ, Greis KD, Turco SJ (1992) Refined structure of the lipophosphoglycan of Leishmania donovani. J Biol Chem 267: 6829–6833

    PubMed  CAS  Google Scholar 

  • Toba H, Crowford JT, Ellner JJ (1989) Pathogenicity of Mycobacterium avium for human monocytes: absence of macrophage activating factor activity of -y interferon. Infect Immun 57: 239–244

    PubMed  CAS  Google Scholar 

  • Unkeless JC (1989) Function and heterogeneity of human Fc receptors for immunoglobulin G. J Clin Invest 83: 355–361

    Article  PubMed  CAS  Google Scholar 

  • Vachula M, Holzer TJ, Anderson BR (1989) Suppression of monocyte oxidative response by phenolic glycolipid I of Mycobacterium leprae. J Immunol 142: 1696–1701

    PubMed  CAS  Google Scholar 

  • Van Strijp JAG, Russell DG, Tuomanen E, Brown EJ, Wright SD (1993) Ligand specificity of purified complement receptor type three (CD11 b/CE18, am32, Mac-1): Indirect effects of an ARG-GLY-ASP ( RGD) sequence. J Immunol 151: 3324–3336

    PubMed  Google Scholar 

  • Vlassara H, Brownlee M, Cerami A (1981) High affinity receptor-mediated uptake and degradation of glucose-modified proteins: a potential mechanism for the removal of senescent macromolecules. Proc Natl Acad Sci USA 78: 5190–5195

    Article  PubMed  CAS  Google Scholar 

  • Wilson CB, Tsai V, Remington JS (1980) Failure to trigger the oxidative metabolic burst by normal macrophages: possible mechanism for survival of intracellular pathogens. J Exp Med 151: 328–346

    Article  PubMed  CAS  Google Scholar 

  • Wilson ME, Hardin KK (1988) The major concanavalin A-binding surface glycoprotein of Leishmania donovani chagasi promastigotes is involved in attachment to human macrophages. J Immunol 141: 265–272

    PubMed  CAS  Google Scholar 

  • Wilson ME, Pearson RD (1986) Evidence that Leishmania donovani utilizes a mannose receptor on human mononuclear phagocytes to establish intracellular parasitism. J Immunol 136: 4681–4688

    PubMed  CAS  Google Scholar 

  • Wilson ME, Pearson RD (1988) Roles of CR3 and mannose receptors in the attachment and ingestion of Leishmania donovani by human mononuclear phagocytes. Infect Immun 56: 363–369

    PubMed  CAS  Google Scholar 

  • Wirth JJ, Kierszenbaum F (1984) Fibronectin enhances macrophage association with invasive forms of Trypanosome cruzi. J Immunol 133: 460–464

    PubMed  CAS  Google Scholar 

  • Wozencraft AD, Sayers G, Blackwell JM (1986) Macrophage type 3 complement receptors mediate serum-independent binding of Leishmania donovani: detection of macrophage-derived complement on the parasite surface by immunoelectron microscopy. J Exp Med 164: 1332–1337

    Article  PubMed  CAS  Google Scholar 

  • Wright SD (1992) Receptors for complement and the biology of phagocytosis. In: Gallin JI, Goldstein IM, Snyderman R (eds) Inflammation: basic principles and clinical correlates, 2nd edn. Raven, New York, pp 477–495

    Google Scholar 

  • Wright SD, Silverstein SC (1982) Tumor-promoting phorbol esters stimulate C3b and C3b’ receptormediated phagocytosis in cultured human monocytes. J Exp Med 156: 1149–1164

    Article  PubMed  CAS  Google Scholar 

  • Wright SD, Silverstein SC (1983) Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. J Exp Med 158: 2016–2023

    Article  PubMed  CAS  Google Scholar 

  • Wright SD, Detmers PA, Jong MTC, Meyer BC (1986) Inteferon-y depresses binding of ligand by C3b and C3bi receptors on cultured human monocytes, an effect reversed by fibronectin. J Exp Med 163: 1245–1259

    Article  PubMed  CAS  Google Scholar 

  • Wyler DJ, Sypek JP, McDonald JA (1985) In vitro parasite-monocyte interactions in human Leishmaniasis: possible role of fibronectin in parasite attachment. Infect Immun 49: 305–311

    PubMed  CAS  Google Scholar 

  • Yamamoto K, Johnston RB Jr (1984) Dissociation of phagocytosis from stimulation of the oxidative metabolic burst in macrophages. J Exp Med 159: 405–416

    Article  PubMed  CAS  Google Scholar 

  • Youmans GP (1979) Tuberculosis. Saunders, Philadelphia

    Google Scholar 

  • Zhang Y, Doerfler M, Lee TC, Guillemin B, Rom WN (1993) Mechanisms of stimulation of interleukin1ß and tumor necrosis factor-a by Mycobacterium tuberculosis components. J Clin Invest 91: 2076–2083

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schlesinger, L.S. (1996). Entry of Mycobacterium tuberculosis into Mononuclear Phagocytes. In: Shinnick, T.M. (eds) Tuberculosis. Current Topics in Microbiology and Immunology, vol 215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80166-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80166-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80168-6

  • Online ISBN: 978-3-642-80166-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics