Skip to main content

Intracellular Transport of Retroviral Capsid Components

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 214))

Abstract

Formation of a virus particle protects the viral genome from exogenous agents and permits release of its content upon delivery to the target cell. Retroviruses generally cause persistent infections and do not usually lyse their host cells. In this case virus morphogenesis requires transport of individual virion components to a specific site within the producer cell, with subsequent assembly and release by budding from the plasma membrane. Extracellular infectious retroviruses are composed of an inner core containing the RNA genome and the viral replication enzymes (products of the pol gene) enclosed in a host-derived lipid membrane that contains the viral glycoproteins (products of the env gene; Fig. 1). Morphogenesis of any retrovirus therefore requires the morphoieic function of

Assembly and disassembly (late and early) phases of retroviral replication. In the upper part, three essential genes for particle formation (gag, pol, env) are depicted. The domain organization is shown for the polyproteins of human immunodeficiency virus (HIV)-1, but is generally similar for all retroviruses. MA, matrix; CA, capsid;NC, nucleocapsid; PR; RT, reverse transcriptase; IN, integrase; SU surface glycoprotein; TM, transmembrane glycoprotein. The N-terminal MA domain is highligthed; the circle indicates modification by myristic acid. In the lower part, the late events leading to assembly, by budding, and release of immature viruses are shown on the left, extracellular maturation to the infectious virion in the middle, and the early phase of infection (including virus uptake, uncoating, genome replicaion, and integration) on the right

the core proteins encoded by the gag gene at the 5′ end of the genome. Incorporation of the othe components (Pol and Enc proteins and genomic RNA) is not necessary for particle formation, but is necessary for infectivity and may also be important in targeting and assembly. Additional viral and cellular proteins have been identified in infectious retrovirus preparations, most notably in the case of human immunodeficiency virus type 1 (HIV-1). Some of these accesory proteins serve important functions (see Chap. 7) while others are fortuitous contaminants, due to the fact that retroviruses cannot be purified to homogeneity. Moreover, particle assembly in the infected cell can lead to nonspecific incorporation of cytoplasmic proteins or nucleic acids if these are available at the assembly site and are not actively excluded.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aboud M, Shoor R, Bari S, Hasan Y, Shurtz R, Malik Z, Salzberg S (1982) Biochemical analysis and electron microscopic study on intracellular virions in NIH/3T3 mouse cells chronically infected with Moloney murine leukemia virus: effect of interferon. J Gen Virol 62: 219–225

    Article  PubMed  CAS  Google Scholar 

  • Aloia RC, Jensen FC, Curtain CC, Mobley PW, Gordon LM (1988) Lipid composition and fluidity of the human immunodeficiency virus. Proc Natl Acad Sei USA 85: 900–904

    Article  CAS  Google Scholar 

  • Aloia RC, Tian H, Jensen FC (1993) Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes. Proc Natl Acad Sei USA 90: 5181–5185

    Article  CAS  Google Scholar 

  • Arthur LO, Bess JW Jr, Sowder RC II, Benveniste RE, Mann DL, Chermann JC, Henderson LE (1992) Cellular proteins bound to immunodeficiency viruses: implications for pathogenesis and vaccines. Science 258: 1935–1938

    Article  PubMed  CAS  Google Scholar 

  • Bathurst IC, Chester N, Gibson HL, Dennis AF, Steimer KS, Barr PJ (1989) N myristylation of the human immunodeficiency virus type 1 gag polyprotein precursor in Saccharomyces cerevisiae. J Virol 63: 3176–3179

    CAS  Google Scholar 

  • Bennett RP, Nelle TD, Wills JW (1993) Functional chimeras of the Rous sarcoma virus and human immunodeficiency virus gag proteins. J Virol 67: 6487–6498

    PubMed  CAS  Google Scholar 

  • Biswas P, Poli G, Kinter AL, Justement JS, Stanley SK, Maury WJ, Bressler P, Orenstein JM, Fauci AS (1992) Interferon gamma induces the expression of human immunodeficiency virus in persistently infected promonocytic cells (U1) and redirects the production of virions of intracytoplasmic vacuoles in phorbol myristate acetate differentiated U1 cells. J Exp Med 176: 739–750

    Article  PubMed  CAS  Google Scholar 

  • Blenis J, Resh MD (1993) Subcellular localization specified by protein acylation and phosphorylation. Curr Opin Cell Biol 5: 984–989

    Article  PubMed  CAS  Google Scholar 

  • Bolognesi DP, Montelaro RC, Frank H, Schafer W (1978) Assembly of type C oncornaviruses: a model. Science 199: 183–186

    Article  PubMed  CAS  Google Scholar 

  • Bour S, Schubert U, Peden K, Strebel K (1996) The envelope glycoprotein of human immunodeficiency virus type 2 has a Vpu-like activity that enhances viral particle release. J Virol 70: 820–829

    PubMed  CAS  Google Scholar 

  • Bourinbaiar AS, Phillips DM (1991) Transmission of human immunodeficiency virus from monocytes to epithelia. J Acquir Immune Defic Syndr 4: 56–63

    PubMed  CAS  Google Scholar 

  • Bowerman B, Brown PO, Bishop JM, Varmus HE (1989) A nucleoprotein complex mediates the integration of retroviral DNA. Genes Dev 3: 469–478

    Article  PubMed  CAS  Google Scholar 

  • Bray M, Prasad S, Dubay WJ, Hunter E, Jeang K-T, Rekosh D, Hammarskjòld M-L (1994) A small element from the Mason-Pfizer monkey virus genome makes human immunodeficiency virus type 1 expression and replication Rev-independent. J Virol 91: 1256–1260

    CAS  Google Scholar 

  • Brody BA, Rhee SS, Sommerfelt MA, Hunter E (1992) A viral protease mediated cleavage of the transmembrane glycoprotein of Mason Pfizer monkey virus can be suppressed by mutations within the matrix protein. Proc Natl Acad Sci USA 89: 3443–3447

    Article  PubMed  CAS  Google Scholar 

  • Brody BA, Rhee SS, Hunter E (1994) Postassembly cleavage of a retroviral glycoprotein cytoplasmic domain removes a necessary incorporation signal and activates fusion activity. J Virol 68: 4620–4627

    PubMed  CAS  Google Scholar 

  • Bryant M, Ratner L (1990) Myristoylation dependent replication and assembly of human immunodeficiency virus 1. Proc Natl Acad Sci USA 87: 523–527

    Article  PubMed  CAS  Google Scholar 

  • Bugelski PJ, Maleeff BE, Klinkner AM, Ventre J, Hart TK (1995) Ultrastructural evidence of an interaction between Env and Gag proteins during assembly of HIV type 1. AIDS Res Hum Retroviruses 11: 55–64

    Article  PubMed  CAS  Google Scholar 

  • Bukrinsky Ml, Sharova N, Dempsey MP, Stanwick TL, Bukrinskaya AG, Haggerty S, Stevenson M (1992) Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proc Natl Acad Sci USA 89: 6580–6584

    Google Scholar 

  • Bukrinsky Ml, Haggerty S, Dempsey MP, Sharova N, Adzhubel A, Spitz L, Lewis P, Goldfarb D, Emerman M, Stevenson M (1993a) A nuclear localization signal within HIV 1 matrix protein that governs infection of non dividing cells. Nature 365: 666–669

    Article  PubMed  CAS  Google Scholar 

  • Bukrinsky Ml, Sharova N, McDonald TL, Pushkarskaya T, Tarpley WG, Stevenson M (1993b) Association of integrase, matrix, and reverse transcriptase antigens of human immunodeficiency virus type 1 with viral nucleic acids following acute infection. Proc Natl Acad Sci USA 90: 6125–6129

    Google Scholar 

  • Burnette B, Yu G, Felsted RL (1993) Phosphorylation of HIV 1 gag proteins by protein kinase C J Biol Chem 268: 8698–8703

    CAS  Google Scholar 

  • Burstein H, Bizub D, Skalka AM (1991) Assembly and processing of avian retroviral gag polyproteins containing linked protease dinners. J Virol 65: 6165–6172

    PubMed  CAS  Google Scholar 

  • Campbell S, Vogt VM (1995) Self-assembly in vitro of purified CA-NC proteins from Rous sarcoma virus and human immunodeficiency virus type 1. J Virol 69: 6487–6497

    PubMed  CAS  Google Scholar 

  • Canivet M, Jouanny C, Fourcade A, Lasneret J, Rhodes-Feuillette A, Peries J (1983) Effect of human interferon on type D retroviruses multiplication in chronically infected cell lines. J Interferon Res 3: 53–64

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee S, Bradac JA, Hunter E (1982) Effect of monensin or Mason Pfizer monkey virus glycoprotein synthesis. J Virol 44: 1003–1012

    PubMed  CAS  Google Scholar 

  • Chazal N, Carrière C, Gay B, Boulanger P (1994) Phenotypic characterization of insertion mutants of the human immunodeficiency virus type 1 Gag precursor expressed in recombinant baculovirusinfected cells. J Virol 68: 111–122

    PubMed  CAS  Google Scholar 

  • Chazal N, Gay B, Carrière C, Tournier J, Boulanger P (1995) Human immunodeficiency virus type 1 MA deletion mutants expressed in baculovirus-infected cells: cis and trans effects on the Gag precursor assembly pathway. J Virol 69: 365–375

    PubMed  CAS  Google Scholar 

  • Damsky CH, Sheffield JB, Tuszynski GP, Warren L (1977) Is there a role for actin in virus budding? J Cell Biol 75: 593–605

    Google Scholar 

  • Delchambre M, Gheysen D, Thines D, Thiriart C, Jacobs E, Verdin E, Horth M, Burny A, Bex F (1989) The Gag precursor of simian immunodeficiency virus assembles into virus-like particles. EMBO J 8: 2653–2660

    PubMed  CAS  Google Scholar 

  • Deminie CA, Emerman M (1994) Functional exchange of an oncoretrovirus and a lentivirus matrix protein. J Virol 68: 4442–4449

    PubMed  CAS  Google Scholar 

  • Dorfman T, Mammano F, Haseltine WA, Göttlinger HG (1994) Role of the matrix protein in the virion association of the human immunodeficiency virus type 1 envelope glycoprotein. J Virol 68: 1689–1696

    PubMed  CAS  Google Scholar 

  • Edbauer CA, Naso RB (1983) Cytoskeleton associated Pr65gag and retrovirus assembly. Virology 130: 415–426

    Article  PubMed  CAS  Google Scholar 

  • Edbauer CA, Naso RB (1984) Cytoskeleton associated Pr65gag and assembly of retrovirus temperature sensitive mutants in chronically infected cells. Virology 134: 389–397

    Article  PubMed  CAS  Google Scholar 

  • Evans SS, Wang WC, Gregorio CC, Han T, Repasky EA (1993) Interferon-a alters spectrin organization in normal and leukemic human B lymphocytes. Blood 81: 759–766

    PubMed  CAS  Google Scholar 

  • Fäcke M, Janetzko A, Shoeman RL, Kräusslich HG (1993) A large deletion in the matrix domain of the human immunodeficiency virus gag gene redirects virus particle assembly from the plasma membrane to the endoplasmic reticulum. J Virol 67: 4972–4980

    PubMed  Google Scholar 

  • Fernie BF, Poli G, Fauci AS (1991) Alpha interferon suppresses virion but not soluble human immunodeficiency virus antigen production in chronically infected T lymphocytic cells. J Virol 65: 3968–3971

    PubMed  CAS  Google Scholar 

  • Fischer U, Huber J, Boelens WC, Mattaj IW, Lührmann R (1995) The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 82: 475–483

    Google Scholar 

  • Franke EK, Yuan HEH, Luban J (1994) Specific incorporation of cyclophilin A into HIV-1 virions. Nature 372: 4972 - 4980

    Article  Google Scholar 

  • Freed EO, Martin MA (1994) HIV-1 infection of non-dividing cells. Nature 369: 107–108

    Article  PubMed  CAS  Google Scholar 

  • Freed EO, Martin MA (1995) Virion incorporation of envelope glycoproteins with long but not short cytoplasmic tails is blocked by specific single amino acid substitutions in the human immunodeficiency virus type 1 matrix. J Virol 69: 1984–1989

    PubMed  CAS  Google Scholar 

  • Freed EO, Orenstein JM, Buckler White AJ, Martin MA (1994) Single amino acid changes in the human immunodeficiency virus type 1 matrix protein block virus particle production. J Virol 68: 5311–5320

    Google Scholar 

  • Freed EO, Englund G, Martin MA (1995) Role of the basic domain of human immunodeficiency virus type 1 matrix in macrophage infection. J Virol 69: 3949–3954

    PubMed  CAS  Google Scholar 

  • Gallay P, Swingler S, Aiken C, Trono D (1995a) HIV-1 infection of nondividing cells: C-terminal phosphorylation of the viral matrix protein is a key regulator. Cell 80: 379–388

    Google Scholar 

  • Gallay P, Swingler S, Song J, Bushman F, Trono D (1995b) HIV nuclear import is governed by the phosphotyrosine-mediated binding of matrix to the core domain of integrase. Cell 83: 569–576

    Article  PubMed  CAS  Google Scholar 

  • Gallina A, Mantoan G, Rindi G, Milanesi G (1994) Influence of MA internal sequences, but not of the myristylated N-terminus sequence, on the binding site of HIV-1 Gag protein. Biochem. Biophys Res Commun 204: 1031–1038

    Google Scholar 

  • Garoff H, Wilschut J, Liljeström P, Wahlberg JM, Bron R, Suomalainen M, Smyth J, Salminen A, Barth BU, Zhao H et al (1994) Assembly and entry mechanisms of Semliki Forest virus. Arch Virol [Suppl] 9: 329–338

    CAS  Google Scholar 

  • Gebhardt A, Bosch JV, Ziemiecki A, Friis RR (1984) Rous sarcoma virus p19 and gp35 can be chemically crosslinked to high molecular weight complexes: an insight into virus assembly. J Mol Biol 174: 297–317

    Article  PubMed  CAS  Google Scholar 

  • Gelderblom HR, Hausmann EH, Özel M, Pauli G, Koch MA (1987) Fine structure of human immunodeficiency virus ( HIV) and immunolocalization of structural proteins. Virology 156: 171–176

    Google Scholar 

  • Gendelman HE, Baca L, Turpin JA, Kalter DC, Hansen BD, Orenstein JM, Friedman RM, Meitzer MS (1990) Restriction of HIV replication in infected T cells and monocytes by interferon alpha. AIDS Res Hum Retroviruses 6: 1045–1049

    PubMed  CAS  Google Scholar 

  • Gheysen D, Jacobs E, de Foresta F, Thiriart C, Francotte M, Thines D, De Wilde M (1989) Assembly and release of HIV 1 precursor Pr55gag virus like particles from recombinant baculovirus infected insect cells. Cell 59: 103–112

    CAS  Google Scholar 

  • Goepfert PA, Wang G, Mulligan MJ (1995) Identification of an ER retrieval signal in a retroviral glycoprotein. Cell 82: 543–544.

    Article  PubMed  CAS  Google Scholar 

  • González SA, Affranchino JL, Gelderblom HR, Burny A (1993) Assembly of the matrix protein of simian immunodeficiency virus into virus like particles. Virology 194: 548–556

    Article  PubMed  Google Scholar 

  • Göttlinger HG, Sodroski JG, Haseltine WA (1989) Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proc Natl Acad Sei USA 86: 5781–5785

    Article  Google Scholar 

  • Göttlinger HG, Dorfman, T, Cohen EA, Haseltine WA (1993) Vpu protein of human immunodeficiency virus type 1 enhances the release of capsids produced by gag gene constructs of widely divergent retroviruses. Proc Natl Acad Sei USA 90: 7381–7385

    Article  Google Scholar 

  • Granowitz C, Goff SP (1994) Substitution mutations affecting a small region of the moloney murine leukemia virus MA Gag protein block assembly and release of virion particles. Virology 205: 336–344

    Article  PubMed  CAS  Google Scholar 

  • Grief C, Farrar GH, Kent KA, Berger EG (1991) The assembly of HIV within the Golgi apparatus and Golgi derived vesicles of JM cell syncytia. AIDS 5: 1433–1439

    Article  PubMed  CAS  Google Scholar 

  • Hansen M, Jelinek L, Whithing S, Barklis E (1990) Transport and assembly of Gag proteins into Moloney murine leukemia virus. J Virol 64: 5306–5316

    PubMed  CAS  Google Scholar 

  • Hansen M, Jelinek L, Jones RS, Stegeman Olsen J, Barklis E (1993) Assembly and composition of intracellular particles formed by Moloney murine leukemia virus J Virol 67: 5163–5174

    Google Scholar 

  • Hayakawa T, Miyazaki T, Misumi Y, Kobayashi M, Fujisawa Y (1992) Myristoylation-dependent membrane targeting and release of the HTLV-I Gag precursor, Pr53gag, in yeast. Gene 119: 273–277

    Article  PubMed  CAS  Google Scholar 

  • Heine UL, Demsey AE, Tucker RW, Bykovsky AF (1985) Intracellular type A retrovirus movement associated with an intact microtubule system. J Gen Virol 66: 275–282

    Article  PubMed  Google Scholar 

  • Heinzinger NK, Bukrinsky Ml, Haggerty SA, Ragland AM, Kewalramani V, Lee MA, Gendelman HE, Ratner L, Stevenson M, Emerman M (1994) The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc Natl Acad Sei USA 91: 7311–7315

    Article  CAS  Google Scholar 

  • Henderson LE, Krutzsch HC, Oroszlan (1983) Myristyl amino-terminal acylation of murine retrovirus proteins: an unusual post-translational protein modification. Proc Natl Acad Sei USA 80: 339–343

    CAS  Google Scholar 

  • Hill CP, Worthy lake D, Bancroft DP, Christensen AM, Sundquist Wl (1996) Crystal structures of the trimeric HIV-1 matrix protein: implications for membrane association and assembly. Proc Natl Acad Sei USA 93 (in press)

    Google Scholar 

  • Höner B, Shoeman RL, Traub P (1991) Human immunodeficiency virus type 1 protease microinjected into cultured human skin fibroblasts cleaves vimentin and affects cytoskeletal and nuclear architecture. J Cell Sei 100: 799–807

    Google Scholar 

  • Hoshikawa N, Kojima A, Yasuda A, Takayashiki E, Masuko S, Chiba J, Sata T, Kurata T (1991) Role of the gag and pol genes of human immunodeficiency virus in the morphogenesis and maturation of retrovirus like particles expressed by recombinant vaccinia virus: an ultrastructural study. J Gen Virol 72: 2509–2517

    Article  PubMed  CAS  Google Scholar 

  • Jacobs E, Gheysen D, Thines D, Francotte M, de Wilde M (1989) The HIV 1 Gag precursor Pr55gag synthesized in yeast is myristoylated and targeted to the plasma membrane. Gene 79: 71–81

    CAS  Google Scholar 

  • Jones TA, Blaug G, Hansen M, Barklis E (1990) Assembly of gag ß-galactosidase proteins into retrovirus particles. J Virol 64: 2265–2279

    PubMed  CAS  Google Scholar 

  • Johnston DS (1995) The intracellular localization of messenger RNAs. Cell 81: 161–170

    Google Scholar 

  • Jorgensen EC, Pedersen FS, Jorgensen P (1992) Matrix protein of Akv murine leukemia virus: genetic mapping of regions essential for particle formation. J Virol 66: 4479–4487

    PubMed  CAS  Google Scholar 

  • Kaplan AH, Swanstrom R (1991) Human immunodeficiency virus type 1 Gag proteins are processed in two cellular compartments. Proc Natl Acad Sei USA 88: 4528–4532

    Article  CAS  Google Scholar 

  • Kaplan AH, Zack JA, Knigge M, Paul DA, Kempf DJ, Norbeck DW, Swanstrom R (1993) Partial inhibition of the human immunodeficiency virus type 1 protease results in aberrant virus assembly and the formation of noninfectious particles J Virol 67: 4050–4055

    CAS  Google Scholar 

  • Kaplan AH, Manchester M, Swanstrom R (1994) The activity of the protease of human immunodeficiency virus type 1 is initiated at the membrane of infected cells before the release of viral proteins and is required for release of occur with maximum efficiency. J Virol 68: 6782–6786

    PubMed  CAS  Google Scholar 

  • Karacostas V, Wolffe EJ, Nagashima K, Gonda MA, Moss B (1993) Overexpression of the HIV 1 gag pol polyprotein results in intracellular activation of HIV 1 protease and inhibition of assembly and budding of virus like particles. Virology 193: 661–671

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Mosior M, Chung LA, Wu H, McLaughlin S (1991) Binding of peptides with basic residues to membranes containing acidic phospholipids. Biophys J 60: 135–148

    Article  PubMed  CAS  Google Scholar 

  • Klikova M, Rhee SS, Hunter E, Ruml T (1995) Efficient in vivo assembly of retroviral capsids from gag precursor expressed in bacteria J Virol 69: 1093–1098

    CAS  Google Scholar 

  • Klimkait T, Strebel K, Hoggan MD, Martin MA, Orenstein JM (1990) The human immunodeficiency virus type 1 specific protein vpu is required for efficient virus maturation and release J Virol 64: 621–629

    CAS  Google Scholar 

  • Konvalinka J, Litterst MA, Welker R, Kottier H, Rippmann F, Heuser AM, Kräusslich HG (1995a) An active-site mutation in the human immunodeficiency virus type 1 proteinase (PR) causes reduced PR activity and loss of PR-mediated cytotoxicity without apparent effect on virus maturation and infectivity J Virol 69: 7180–7186

    CAS  Google Scholar 

  • Konvalinka J, Löchelt M, Zentgraf H, Flügel RM, Kräusslich HG (1995b) Active foamy virus proteinase is essential for virus infectivity but not for formation of a Pol polyprotein. J Virol 69: 7264–7268

    PubMed  CAS  Google Scholar 

  • Kräusslich HG (1991) Human immunodeficiency virus proteinase dimer as component of the viral polyprotein prevents particle assembly and viral infectivity. Proc Natl Acad Sei USA 88: 3213–3217

    Article  Google Scholar 

  • Kräusslich HG (1992) Specific inhibitor of human immunodeficiency virus proteinase prevents the cytotoxic effects of a single chain proteinase dimer and restores particle formation. J Virol 66: 567–572

    PubMed  Google Scholar 

  • Kräusslich HG, Fäcke M, Heuser AM, Konvalinka J, Zentgraf H (1995) The spacer peptide between human immunodeficiency virus capsid and nucleocapsid proteins is essential for ordered assembly and viral infectivity. J Virol 69: 3407–3419

    PubMed  Google Scholar 

  • Kräusslich HG, Pawlita M, Hunter E, Zentgraf H (1996) The budding type of squirrel monkey retrovirus is influenced by the host cell (submitted for publication) Kuff EL, Lueders KK (1988) The intracisternal A particle gene family: structure and functional aspects. Adv Cancer Res 51: 183–276

    Google Scholar 

  • Lawrence JB, Singer RH, Marselle LM (1989) Highly localized tracks of specific transcripts within interphase nuclei visualized by in situ hybridization. Cell 57: 493–502

    Article  PubMed  CAS  Google Scholar 

  • Lawrence JB, Marselle LM, Byron KS, Johnson CV, Sullivan JL, Singer RH (1990) Subcellular localization of low-abundance human immunodeficiency virus nucleic acid sequences visualized by fluorescence in situ hybridization. Proc Natl Acad Sei USA 87: 5420–5424

    Article  CAS  Google Scholar 

  • Lee PP, Linial ML (1994) Efficient particle formation can occur if the matrix domain of human immunodeficiency virus type 1 Gag is substituted by a myristylation signal J Virol 68: 6644–6654

    CAS  Google Scholar 

  • Leis J, Phillips N, Fu X, Tuazon PT, Traugh JA (1989) Phosphorylation of avian retrovirus matrix protein by Ca2+/phospholipid dependent protein kinase. Eur J Biochem 179: 415–422

    Article  PubMed  CAS  Google Scholar 

  • Löchelt M, Flügel RM (1996) The human foamy virus pol gene is expressed as a Pro-Pol polyprotein and not as a Gag-Pol fusion protein. J Virol 70: 1033–1040

    PubMed  Google Scholar 

  • Lodge R, Göttlinger H, Gabuzda D, Cohen EA, Lemay G (1994) The intracytoplasmic domain of gp41 mediates polarized budding of human immunodeficiency virus type 1 in MDCK cells J Virol 68: 4857–4861

    CAS  Google Scholar 

  • Lu YL, Spearman P, Ratner L (1993) Human immunodeficiency virus type 1 viral protein R localization in infected cells and virions. J Virol 67: 6542–6550

    PubMed  CAS  Google Scholar 

  • Luban J, Bossolt KL, Franke EK, Kalpana GV, Goff SP (1993) Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell 73: 1067–1078

    Article  PubMed  CAS  Google Scholar 

  • Luftig RB, Lupo LD (1994) Viral interactions with the host cell cytoskeleton: the role of retroviral proteases. Trends Microbiol 2: 178–182

    Article  PubMed  CAS  Google Scholar 

  • Mak J, Jiang M, Wainberg MA, Hammarskjold ML, Rekosh D, Kleiman L (1994) Role of Pr160gag pol in mediating the selective incorporation of tRNA(Lys) into human immunodeficiency virus type 1 particles. J Virol 68: 2065–2072

    PubMed  CAS  Google Scholar 

  • Mammano F, Kondo E, Sodroski J, Bukovsky A, Göttlinger HG (1995) Rescue of human immunodeficiency virus type 1 matrix protein mutants by envelope glycoproteins with short cytoplasmic domains. J Virol 69: 3824–3830

    PubMed  CAS  Google Scholar 

  • Massiah MA, Starich MR, Paschall C, Summers MF, Christensen AM, Sundquist Wl (1994) Threedimensional structure of the human immunodeficiency virus type 1 matrix protein J Mol Biol 244: 198–223

    CAS  Google Scholar 

  • Matthews S, Barlow P, Boyd J, Barton G, Russell R, Mills H, Cunningham M, Meyers N, Burns N, Clark N et al (1994) Structural similarity between the p17 matrix protein of HIV 1 and interferon gamma. Nature 370: 666–668

    Article  PubMed  CAS  Google Scholar 

  • McLauglin S, Aderem A (1995) The myristoyl-electrostatic switch: a modulator of reversible proteinmembrane interactions. TIBS 20: 272–276

    Google Scholar 

  • Mergener K, Fäcke M, Welker R, Brinkmann V, Gelderblom HR, Kräusslich HG (1992) Analysis of HIV particle formation using transient expression of subviral constructs in mammalian cells. Virology 186: 25–39

    Article  PubMed  CAS  Google Scholar 

  • Morikawa Y, Kishi T, Zhang WH, Nermut M, Hockley DJ, Jones IM (1995) A molecular determinant of human immunodeficiency virus particle assembly located in matrix antigen p17 J Virol 69: 4519–4523

    CAS  Google Scholar 

  • Nash MA, Meyer MK, Decker GL, Arlinghaus RB (1993) A subset of Pr65gag is nucleus associated in murine leukemia virus infected cells. J Virol 67: 1350–1356

    PubMed  CAS  Google Scholar 

  • Niedrig M, Gelderblom HR, Pauli G, Marz J, Bickhard H, Wolf H, Modrow S (1994) Inhibition of infectious human immunodeficiency virus type 1 particle formation by Gag protein derived peptides. J Gen Virol 75: 1469–1474

    Article  PubMed  CAS  Google Scholar 

  • Nieva JL, Bron R, Corver J, Wilschut (1994) Membrane fusion of Semliki Forest virus requires sphingolipids in the target membrane. EMBO J 13: 2797–2804

    CAS  Google Scholar 

  • Oka T, Ohtsuki Y, Sonobe H, Furihata M, Miyoshi (1990) Suppressive effects of interferons on the production and release of human T-lymphotropic virus-l ( HTLV-I ). Arch Virol 115: 63–73

    Google Scholar 

  • Orenstein JM (1992) Immunodeficiency virus infection. Ultrastruct Pathol 16: 179–210

    Article  PubMed  CAS  Google Scholar 

  • Orenstein JM, Meitzer MS, Phipps T, Gendelman HE (1988) Cytoplasmic assembly and accumulation of human immunodeficiency virus types 1 and 2 in recombinant human colony stimulating factor 1 treated human monocytes: an ultrastructural study. J Virol 62: 2578–2586

    PubMed  CAS  Google Scholar 

  • Owens RJ, Compans RW (1989) Expression of the human immunodeficiency virus envelope glycoprotein is restricted to basolateral surfaces of polarized epithelial cells. J Virol 63: 978–982

    PubMed  CAS  Google Scholar 

  • Owens RJ, Dubay JW, Hunter E, Compans RW (1991) Human immunodeficiency virus envelope protein determines the site of virus release in polarized epithelial cells. Proc Natl Acad Sei USA 88: 3987–3991

    Article  CAS  Google Scholar 

  • Pal R, Reitz MS Jr, Tschachler E, Gallo RC, Sarngadharan MG, Veronese FD (1990) Myristoylation of gag proteins of HIV 1 plays an important role in virus assembly. AIDS Res Hum Retroviruses 6: 721–730

    Article  PubMed  CAS  Google Scholar 

  • Pal R, Mumbauer S, Hoke GM, Takatsuki A, Sarngadharan MG (1991) Brefeldin A inhibits the processing and secretion of envelope glycoproteins of human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 7: 707–712

    Article  PubMed  CAS  Google Scholar 

  • Park J, Morrow CD (1992) The nonmyristoylated Pr160gag~po1 polyprotein of human immunodeficiency virus type 1 interacts with Pr55gag and is incorporated into viruslike particles J Virol 66: 6304–6313

    CAS  Google Scholar 

  • Pautrat G, Suzan M, Salaun D, Corbeau P, Allasia C, Morel G, Filippi P (1990) Human immunodeficiency virus type 1 infection of U937 cells promotes cell differentiation and a new pathway of viral assembly. Virology 179: 749–758

    Article  PubMed  CAS  Google Scholar 

  • Pearce-Pratt R, Malamud D, Phillips DM (1994) Role of the cytoskeleton in cell-to-cell transmission of human immunodeficiency virus J Virol 68: 2898–2905

    CAS  Google Scholar 

  • Peitzsch RM, McLaughlin S (1993) Binding of acylated peptides and fatty acids to phospholipid vesicles: elevance to myristoylated proteins. Biochemistry 32: 10436–10443

    Article  PubMed  CAS  Google Scholar 

  • Peng C, Ho BK, Chang TW, Chang NT (1989) Role of human immunodeficiency virus type 1 specific protease in core protein maturation and viral infectivity. J Virol 63: 2550–2556

    PubMed  CAS  Google Scholar 

  • Pepinsky RB, Vogt VM (1979) Identification of retrovirus matrix proteins by lipid protein cross-linking. J Mol Biol 131: 819–837

    Article  PubMed  CAS  Google Scholar 

  • Pepinsky RB, Vogt VM (1984) Fine-structure analyses of lipid-protein and protein-protein interactions of gag protein p19 of the avian sarcoma and leukemia viruses by cyanogen bromide mapping. J Virol 52: 145–153

    PubMed  CAS  Google Scholar 

  • Pessin JE, Glaser M (1983) Budding of Rous sarcoma virus and vesicular stomatitis virus from localized lipid regions in the plasma membrane of chicken embryo fibroblasts. J Biol Chem 255: 9044–9050

    Google Scholar 

  • Pfeffer LM, Wang E, Tamm I (1980) Interferon inhibits the redistribution of cell surface components. J Exp Med 152: 469–474

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer LM, Landsberger FR, Tamm I (1981) ß-lnterferon-induced time-dependent changes in the plasma membrane lipid bilayer of cultured cells. J Interferon Res 1: 613–620

    Article  PubMed  CAS  Google Scholar 

  • Phillips DM, Bourinbaiar AS (1992) Mechanism of HIV spread from lymphocytes to epithelia. Virology 186: 261–273

    Article  PubMed  CAS  Google Scholar 

  • Phillips DM, Tan X (1992) HIV-1 infection of the trophoblast cell line BeWo: a study of virus uptake. AIDS Res Hum Retroviruses 8: 1683–1691

    Google Scholar 

  • Pitha PM, Bilello JA, Riggin CH (1981) Effect of interferon on retrovirus replication. Tex Rep Biol Med 41: 603–609

    PubMed  CAS  Google Scholar 

  • Poli G, Orenstein JM, Kinter A, Folks TM, Fauci AS (1989) Interferon alpha but not AZT suppresses HIV expression in chronically infected cell lines. Science 244: 575–577

    Article  PubMed  CAS  Google Scholar 

  • Pumplin DW, Bloch RJ (1993) The membrane skeleton. Trends Cell Biol 3: 113–117

    Article  PubMed  CAS  Google Scholar 

  • Rao Z, Belyaev AS, Fry E, Roy P, Jones IM, Stuart Dl (1995) Crystal structure of SIV matrix antigen and implications for virus assembly. Nature 238: 743–747

    Article  Google Scholar 

  • Reicin AS, Paik S, Berkowitz RD, Luban J, Lowy I, Goff SP (1995) Linker insertion mutations in the human immunodeficiency virus type 1 gag gene: effects on virion particle assembly, release, and infectivity. J Virol 69: 642–650

    PubMed  CAS  Google Scholar 

  • Rein A, McClure MR, Rice NR, Luftig RB, Schultz AM (1986) Myristylation site in Pr65gag is essential for virus particle formation by Moloney murine leukemia virus. Proc Natl Acad Sei USA 83: 7246–7250

    Article  CAS  Google Scholar 

  • Rhee SS, Hunter E (1987) Myristylation is required for intracellular transport but not for assembly of D type retrovirus capsids. J Virol 61: 1045–1053

    PubMed  CAS  Google Scholar 

  • Rhee SS, Hunter E (1990a) Structural role of the matrix protein of type D retroviruses in gag polyprotein stability and capsid assembly. J Virol 64: 4383–4389

    PubMed  CAS  Google Scholar 

  • Rhee SS, Hunter E (1990b) A single amino acid substitution within the matrix protein of a type D retrovirus converts its morphogenesis to that of a type C retrovirus. Cell 63: 77–86

    Article  PubMed  CAS  Google Scholar 

  • Rhee SS, Hunter E (1991) Amino acid substitutions within the matrix protein of type D retroviruses affect assembly, transport and membrane association of a capsid. EM BO J 10: 535–546

    Google Scholar 

  • Royer M, Cerutti M, Gay B, Hong SS, Devauchelle G, Boulanger P (1991) Functional domains of HIV 1 gag polyprotein expressed in baculovirus infected cells. Virology 184: 417–422

    Article  PubMed  CAS  Google Scholar 

  • Royer M, Hong SS, Gay B, Cerutti M, Boulanger P (1992) Expression and extracellular release of human immunodeficiency virus type 1 Gag precursors by recombinant baculovirus infected cells. J Virol 66: 3230–3235

    PubMed  CAS  Google Scholar 

  • Sagara J, Tsukita S, Yonemura S, Tsukita S, Kawai A (1995) Cellular actin-binding ezrin-radixin-moesin ( ERM) family proteins are incorporated into the rabies virion and closely associated with envelope proteins in the cell. Virology 206: 485–494

    Google Scholar 

  • Satake M, Luftig RB (1982) Microtubule-depolymerizing agents inhibit Moloney murine leukemia virus production J Gen Virol 58: 339–349

    CAS  Google Scholar 

  • Schätzl H, Gelderblom HR, Nitschko H, von der Helm K (1991) Analysis of non-infectious HIV particles produced in presence of HIV proteinase inhibitor. Arch Virol 120: 71–81

    Article  PubMed  Google Scholar 

  • Schliephake AW, Rethwilm A (1994) Nuclear localization of foamy virus Gag precursor protein. J Virol 68: 4946–4954

    PubMed  CAS  Google Scholar 

  • Schubert U, Bour S, Ferrer-Montiel A, Montal M, Maldarelli F, Strebel K (1996a) The two biological activities of the human immunodeficiency virus type-1 Vpu protein involve two separate structural domains J Virol 70: 809–819

    CAS  Google Scholar 

  • Schubert U, Henklein P, Ferrer-Montiel AV, Oblatt-Montal M, Strebel K, Montal M (1996b) Identification of an ion channel activity of the Vpu transmembrane domain and its function in the regulation of virus release from HIV-1 infected cells (submitted for publication) Schultz AM, Henderson LE, Oroszlan S (1988) Fatty acylation of proteins. Annu Rev Cell Biol 4: 611–647

    Google Scholar 

  • Schultz AM, Rein A (1989) Unmyristylated Moloney murine leukemia virus Pr65gag is excluded from virus assembly and maturation events. J Virol 63: 2370–2373

    PubMed  CAS  Google Scholar 

  • Sen GC, Pinter A (1983) Interferon-mediated inhibition of production of Gazdar murine sarcoma virus, a retrovirus lacking env proteins and containing an uncleaved gag precursor. Virology 126: 403–407

    Article  PubMed  CAS  Google Scholar 

  • Shoeman RL, Höner B, Stoller TJ, Kesselmeier C, Miedel MC, Traub P, Graves MC (1990) Human immunodeficiency virus type 1 protease cleaves the intermediate filament proteins vimentin, desmin, and glial fibrillary acidic protein. Proc Natl Acad Sei USA 87: 6336–6340

    Article  CAS  Google Scholar 

  • Shoeman RL, Kesselmeier C, Mothes E, Höner B, Traub P (1991) Non viral cellular substrates for human immunodeficiency virus type 1 protease. FEBS Lett 278: 199–203

    Article  PubMed  CAS  Google Scholar 

  • Simons K, van Meer G (1988) Lipid sorting in epithelial cells. Biochemistry 27: 6197–6202

    Article  PubMed  CAS  Google Scholar 

  • Smith AJ, Srinivasakumar N, Hammarskjold ML, Rekosh D (1993) Requirements for incorporation of Pr160gag pol from human immunodeficiency virus type 1 into virus like particles. J Virol 67: 2266–2275

    PubMed  CAS  Google Scholar 

  • Smith MS, Thresher RJ, Pagano JS (1991) Inhibition of human immunodeficiency virus type 1 morphogenesis in T cells by alpha interferon. Antimicrob Agents Chemother. 35: 62–67

    PubMed  CAS  Google Scholar 

  • Spearman P, Wang JJ, Vander Heyden N, Ratner L (1994) Identification of human immunodeficiency virus type 1 Gag protein domains essential to membrane binding and particle assembly. J Virol 68: 3232–3242

    Google Scholar 

  • Srinivasakumar N, Hammarskjold ML, Rekosh D (1995) Characterization of deletion mutations in the capsid region of human immunodeficiency virus type 1 that affect particle formation and Gag-Pol precursor incorporation. J Virol 69: 6106–6114

    PubMed  CAS  Google Scholar 

  • Taniguchi H, Manenti S (1993) Interaction of myristoylated alanina-rich protein kinase C substrate ( MARCKS) with membrane phospholipids. J Biol Chem 268: 9960–9963

    Google Scholar 

  • Terwilliger EF, Cohen EA, Lu YC, Sodroski JG, Haseltine WA (1989) Functional role of human immunodeficiency virus type 1 vpu. Proc Natl Acad Sei USA 86: 5163–5167

    Article  CAS  Google Scholar 

  • Thali M, Bukovsky A, Kondo E, Rosenwirth B, Walsh C, Sodroski J, Göttlinger HG (1994) Functional association of cyclophilin A with HIV-1 virions. Nature 372: 363–365

    Article  PubMed  CAS  Google Scholar 

  • Thelen M, Rosen A, Nairn AC, Aderem A (1991) Regulation by phosphorylation of reversible association of myristoylated protein kinase C substrate with the plasma membrane. Nature 351: 320–322

    Article  PubMed  CAS  Google Scholar 

  • Ulmer JB, Palade GE (1991) Effects of Brefeldin A on the Golgi complex, endoplasmic reticulum and viral envelope glycoproteins in murine erythroleukemia cells. Eur J Cell Biol 54: 38–54

    PubMed  CAS  Google Scholar 

  • Vieillard V, Lauret E, Rousseau V, de Maeyer E (1994) Blocking of retroviral infection at a step prior to reverse transcription in cells transformed to constitutively express interferon beta. Proc Natl Acad Sci USA 91: 2689–2693

    CAS  Google Scholar 

  • Vlasuk GP, Waxman L, Davis LJ, Dixon RA, Schultz LD, Hofmann KJ, Tung JS, Schulman CA, Ellis RW, Bencen GH, et al (1989) Purification and characterization of human immunodeficiency virus (HIV) core precursor (p55) expressed in Saccharomyces cerevisiae. J Biol Chem 264: 12106–12112

    PubMed  CAS  Google Scholar 

  • von Schwedler U, Kornbluth RS, Trono D (1994) The nuclear localization signal of the matrix protein of human immunodeficiency virus type 1 allows the establishment of infection in macrophages and quiescent T lymphocytes. Proc Natl Acad Sci USA 91: 6992–6996

    Article  Google Scholar 

  • Wagner R, Demi L, Fliessbach H, Wanner G, Wolf H (1994) Assembly and extracellular release of chimeric HIV-1 Pr55gag retrovirus-like particles. Virology 200: 162–175

    Article  PubMed  CAS  Google Scholar 

  • Wang CT, Barklis E (1993) Assembly, processing, and infectivity of human immunodeficiency virus type 1 gag mutants. J Virol 67: 4264–4273

    PubMed  CAS  Google Scholar 

  • Wang CT, Zhang Y, McDermott J, Barklis E (1993) Conditional infectivity of human immunodeficiency virus matrix domain deletion mutant. J Virol 67: 7067–7076

    PubMed  CAS  Google Scholar 

  • Wang CT, Stegeman Olsen J, Zhang Y, Barklis E (1994) Assembly of HIV GAG p galactosidase fusion proteins into virus particles. Virology 200: 524–534

    Google Scholar 

  • Wang E, Wolf BA, Lamb RA, Choppin PW, Goldberg AR (1976) The presence of actin in enveloped viruses. In: Goldman R, Pollard T, Rosenbaums J (eds) Cell motility. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 589–599

    Google Scholar 

  • Wang E, Pfeffer LM, Tamm I (1981) Interferon increases the abundance of submembraneous microfilaments in HeLa-S3 cells in suspension culture. Proc. Natl. Acad. Sc. USA 78: 6281–6285

    Google Scholar 

  • Weaver TA, Panganiban AT (1990) N myristoylation of the spleen necrosis virus matrix protein is required for correct association of the Gag polyprotein with intracellular membranes and for particle formation. J Virol 64: 3995–4001

    CAS  Google Scholar 

  • Weldon RA Jr, Erdie CR, Oliver MG, Wills JW (1990) Incorporation of chimeric gag protein into retroviral particles. J Virol 64: 4169–4179

    PubMed  CAS  Google Scholar 

  • Welker R, Janetzko A, Krausslich HG (1996) Plasma membrane targeting of intracisternal A type particle polyproteins leads to particle release and specifically activates the viral proteinase (submitted for publication )

    Google Scholar 

  • Wen W, Meinkoth JL, Tsien RY, Taylor SS (1995) Identification of a signal for rapid export of proteins from the nucleus. Cell 82: 463–473

    Article  PubMed  CAS  Google Scholar 

  • Wills JW, Craven RC (1991) Form, function, and use of retroviral Gag proteins. AIDS 5: 639–654

    Google Scholar 

  • Wills JW, Craven RC, Achacoso JA (1989) Creation and expression of myristylated forms of Rous sarcoma virus gag protein in mammalian cells. J Virol 63: 4331–4343

    PubMed  CAS  Google Scholar 

  • Wills JW, Craven RC, Weldon RA Jr, Nelle TD, Erdie CR (1991) Suppression of retroviral MA deletions by the amino terminal membrane binding domain of p60src. J Virol 65: 3804–3812

    PubMed  CAS  Google Scholar 

  • Yu G, Shen FS, Sturch S, Aquino A, Glazer Rl, Felsted RL (1995) Regulation of HIV-1 gag protein subcellular targeting by protein kinase C. J Biol Chem 270: 4792–4796

    Article  PubMed  CAS  Google Scholar 

  • Yu SF, Baldwin DN, Gwynn SR, Yandapalli S, Linial M (1996) Human foamy virus replication: a pathway distinct from that of retroviruses and hepadnaviruses. Science 271: 1579–1582

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Yu QC, Lee TH, Essex M (1992a) The C terminus of human immunodeficiency virus type 1 matrix protein is involved in early steps of the virus life cycle. J Virol 66: 5667–5670

    PubMed  CAS  Google Scholar 

  • Yu X, Yuan X, Matsuda Z, Lee TH, Essex M (1992b) The matrix protein of human immunodeficiency virus type 1 is required for incorporation of viral envelope protein into mature virions. J Virol 66: 4966–4971

    PubMed  CAS  Google Scholar 

  • Yuan X, Yu X, Lee TH, Essex M (1993) Mutations in the N terminal region of human immunodeficiency virus type 1 matrix protein block intracellular transport of the Gag precursor. J Virol 67: 6387–6394

    CAS  Google Scholar 

  • Zhou W, Parent LJ, Wills JW, Resh MD (1994) Identification of a membrane binding domain within the amino terminal region of human immunodeficiency virus type 1 Gag protein which interacts with acidic phospholipids. J Virol 68: 2556–2569

    PubMed  CAS  Google Scholar 

  • Zolotukhin AS, Valentin A, Pavlakis GN, Felber BK (1994) Continuous propagation of RRE(-) and Rev(-) RRE(-) human immunodeficiency type 1 molecular clones containing a cis-acting element of simian retrovirus type 1 in human peripheral blood lymphocytes. J Virol 68: 7944–7952

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kräusslich, HG., Welker, R. (1996). Intracellular Transport of Retroviral Capsid Components. In: Kräusslich, HG. (eds) Morphogenesis and Maturation of Retroviruses. Current Topics in Microbiology and Immunology, vol 214. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80145-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80145-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80147-1

  • Online ISBN: 978-3-642-80145-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics