Skip to main content

Characterization of the Receptor Protein-Tyrosine Kinase Gene from the Marine Sponge Geodia cydonium

  • Chapter
Signaling Mechanisms in Protozoa and Invertebrates

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 17))

Abstract

Cells are provided with well-defined receptor structures (signal receivers) which interact with their corresponding ligands (signal molecules) and initiate a signal transduction pathway resulting in a change of cellular behavior or metabolism (Stoddard et al. 1992). It is well established that cells from both eukaryotic protists (single-cell organisms) and from Metazoa (multicellular organisms) respond to signals emanating from the extracellular environment. The extracellular signals to which protists respond are mainly nutrients which diffuse to their surfaces, and in most cases cross the cell membrane. In addition, they are able to bind peptide hormones, e.g., insulin or adrenocorticotropic hormone, as in the unicellular Tetrahymena, by receptor-like structures (Köhidai et al. 1994). Based on experimental data obtained with Tetrahymena, it has been proposed that the survival of protists presupposes the operation of highly dynamic membrane structures capable of recognizing a variety of environmental signals, interactions which are stored in a form of “memory” and transmitted to the progeny generation (Csaba 1987, 1994). Hence, in unicellular eukaryotes, the membrane-bound receptor(s) have a nondetermined ability to recognize ligands and are initially not genetically programmed. In contrast, in Metazoa the receptors are genetically preprogrammed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aroian RV, Koga M, Mendel JE, Ohshima Y, Sternberg PW (1993) The let-23 gene necessary for Caenorhabiditis elegans vulval inducation encodes a tyrosine kinase of the EGF receptor subfamily. Nature 348: 693–699

    Article  Google Scholar 

  • Barnes RD (1980) Invertebrate zoology, 4th edn. Saunders, Philadelphia

    Google Scholar 

  • Beveren CV (1988) Overview of the tyrosine kinase oncogenes. In: Reddy EP, Skalka AM, Curran T (eds) The oncogene handbook. Elsevier, Amsterdam, pp 185–191

    Google Scholar 

  • Borojevic R (1966) Etude experimentale de la différenciation des cellules de l’éponge au cours de son développement. Dev Biol 14: 130–153

    Article  PubMed  CAS  Google Scholar 

  • Brenner S (1987) Phosphotransferase sequence homology. Nature 329: 21

    Article  PubMed  CAS  Google Scholar 

  • Cooper JA, Esch FS, Taylor SS, Hunter T (1984) Phosphorylation sites in enolase and lactate dehydrogenase utilized by tyrosine protein kinases in vivo and in vitro. J Biol Chem 259: 7835–7841

    PubMed  CAS  Google Scholar 

  • Csaba G (1987) Why do hormone receptors arise? In: Csaba G (ed) Development of hormone receptors. Birkhäuser, Basel, pp 7–13

    Google Scholar 

  • Csaba G (1994) Phylogeny and ontogeny of chemical signaling: origin and development of hormone receptors. Int Rev Cytol 155: 1–48

    Article  PubMed  CAS  Google Scholar 

  • Cunningham BA, Hemperley JJ, Murray BA, Prediger EA, Brackenbury R and Edelman GM (1987) Neural cell adhesion molecule: structure, Ig-like domains, cell surface modulation and alternative RNA splicing. Science 236: 799–806

    Article  PubMed  CAS  Google Scholar 

  • Dickerson RE, Geiss I (1969) The structure and action of proteins. Harper and Row, New York

    Google Scholar 

  • Edelman GM, Crossin KL (1991) Cell adhesion molecules. Annu Rev Biochem 60: 155–190

    Article  PubMed  CAS  Google Scholar 

  • Field KG, Olsen GJ, Lane DJ, Giovannoni SJ, Ghiselin MT, Raff EC, Pace NR, Raff RA (1988) Molecular phylogeny of the animal kingdom. Science 239: 748–753

    Article  PubMed  CAS  Google Scholar 

  • Ganlulin V, Rinkevich B, Schäcke H, Kruse M, Müller IM, Müller WEG (1994) Cell adhesion receptors and nuclear receptors are highly conserved from the lowest metazoa (marine sponges) to vertebrates. Biol Chem Hoppe-Seyler 375: 583–588

    Article  Google Scholar 

  • Garrone R (1978) Phylogenesis of connective tissue. Karger, Basel

    Google Scholar 

  • Geer P, Hunter T, Lindberg RA (1994) Receptor protein-tryosine kinases and their signal transduction pathways. Annu Rev Cell Biol 10: 251–337

    Article  PubMed  Google Scholar 

  • Glenney JRJ (1992) Tyrosine-phosphorylated proteins: mediators of signal transduction from the tyrosine kinases. Biochim Biophys Acta 1134: 113–127

    Article  PubMed  CAS  Google Scholar 

  • Hanks SK, Quinn AM (1991) Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol 200A: 38–62

    Article  Google Scholar 

  • Hanks SK, Quinn AM, Hunter T (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241: 42–52

    Article  PubMed  CAS  Google Scholar 

  • Hao QL, Heisterkamp N, Groffen J (1989) Isolation and sequence analysis of a novel human tyrosine kinase gene. Mol Cell Biol 9: 1587–1593

    PubMed  CAS  Google Scholar 

  • Harrelson AL, Goodman CS (1988) Growth cone guidance in insects: fasciclin II is a member of the immunoglobulin superfamily. Science 242: 700–708

    Article  PubMed  CAS  Google Scholar 

  • Henkart P, Humphreys S, Humphreys T (1973) Characterization of sponge aggregation factor. A unique proteoglycan complex. Biochemistry 12: 3045–3050

    Article  PubMed  CAS  Google Scholar 

  • Hunter T (1991) Protein kinase classification. Methods Enzymol 200A: 3–37

    Article  Google Scholar 

  • Hunter T, Lindberg RA, Middlemas DS, Tracy S, Geer P vd (1992) Receptor protein kinases and phosphatases. Cold Spring Harbor Symp Quant Biol 58: 25–41

    Google Scholar 

  • Knoll AH (1994) Proterozoic and early Cambrian protists: evidence for accelerating evolutionary tempo. Proc Natl Acad Sci USA 91: 6743–6750

    Article  PubMed  CAS  Google Scholar 

  • Köhidai J, Karsa J, Csaba G (1994) Effects of hormones on Chemotaxis in Tetrahymena: investigations on receptor memory. Microbios 77: 75–85

    PubMed  Google Scholar 

  • Kolchanov NA, Lim HA (1994) Computer analysis of genetic macromolecules. World Scientific, Singapore

    Google Scholar 

  • Kreuter MH, Robitzki A, Chang S, Steffen R, Michaelis M, Kljajic Z, Bachmann M, Schröder HC, Müller WEG (1992) Production of the cytostatic agent, aeroplysinin by the sponge Verongia aerophoba in in vitro culture. Comp Biochem Physiol 101C: 183–187

    CAS  Google Scholar 

  • Kruse M, Mikoc A, Cetkovic H, Gamulin V, Rinkevich B, Müller IM, Müller WEG (1994) Molecular evidence for the presence of a developmental gene in the lowest animals: identification of a homeobox-like gene in the marine sponge Geodia cydonium Mech Ageing Dev 77: 43–54

    Article  PubMed  CAS  Google Scholar 

  • Lee RH, Slate DI, Moretti R, AM KA, Crews P (1992) Marine sponge polyketide inhibitors of protein tyrosine kinase. Biochem Biophys Res Commun 184: 765–772

    Article  PubMed  CAS  Google Scholar 

  • Livneh E, Glazer L, Segal D, Schlessinger J, Shilo BZ (1985) The Drosophila EGF receptor gene homolog: conservation of both hormone and kinase domains. Cell 40: 599–607

    Article  PubMed  CAS  Google Scholar 

  • Marschalek R, Hofmann J, Schumann G, Bach M, Dingermann T (1993) Different organization of the tRNA-gene-associated repetitive element, DRE, in NC4-derived strains and in other wild-type Dictyostelium discoideum strains. Eur J Biochem 217: 627–631

    Article  PubMed  CAS  Google Scholar 

  • Mehlhorn H (1989) Grudriß der Zoologie. Fisher, Stuttgart, pp 81–82

    Google Scholar 

  • Morgan WR, Greenwald I (1993) Two novel transmembrane protein tyrosine kinases expressed during Caenorhabiditis elegans hypodermal development. Mol Cell Biol 13: 7133–7143

    PubMed  CAS  Google Scholar 

  • Moscona AA (1963) Studies on cell aggregation: demonstration of materials with selective cell-binding activity. Proc Natl Acad Sci USA 49: 742–747

    Article  PubMed  CAS  Google Scholar 

  • Müller WEG (1982) Cell membranes in sponges. Int Rev Cytol 77: 129–181

    Article  Google Scholar 

  • Müller WEG (1995) Molecular phylogeny of Metazoa [animals]: monophyletic origin. Naturwissenschaften 82: 321–329

    Article  PubMed  Google Scholar 

  • Müller WEG, Zahn RK (1973) Purification and characterization of a species- specific aggregation factor in sponges. Exp Cell Res 80: 95–104

    Article  PubMed  Google Scholar 

  • Müller WEG, Zahn RK, Kurelec B, Müller I, Uhlenbruck G, Vaith P (1979) Aggregation of sponge cells; a novel mechanism of controlled intercellular adhesion, basing on the correlation between glycosyltransferases and glycosidases. J Biol Chem 254: 1280–1287

    PubMed  Google Scholar 

  • Müller WEG, Conrad J, Schröder C, Zahn RK, Kurelec B, Dreesbach K, Uhlenbruck G (1983) Characterization of the trimeric, self-recognizing Geodia cydonium lectin I. Eur J Biochem 133: 263–267

    Article  PubMed  Google Scholar 

  • Müller WEG, Diehl-Seifert B, Gramzow M, Friese U, Renneisen K, Schröder HC (1988) Interrelation between extracellular adhesion proteins and extracellular matrix in reaggregation of dissociated sponge cells. Int Rev Cytol 111: 211–229

    Article  Google Scholar 

  • Müller WEG, Schröder HC, Müller IM, Gamulin V (1994a) Phylogenetic relationship of ubiquitin repeats of the polyubiquitin gene from the marine sponge Geodia cydonium. J Mol Evol 39: 369–377

    Article  PubMed  Google Scholar 

  • Müller WEG, Schröder HC, Schäcke H, Müller IM, Gamulin V (1994b) Phylogenetic relationship of adhesion proteins and ubiquitin from the marine sponge Geodia cydonium. Endocytobiosis Cell Res 10: 185–204

    Google Scholar 

  • Müller WEG, Müller IM, Rinkevich B, Gamulin V (1995) Molecular evolution: evidence for the monophyletic origin of multicellular animals. Naturwissenschaften 82: 36–38

    Article  PubMed  Google Scholar 

  • Nishida Y, Hata M, Nishizuka Y, Rutter WJ, Ebina Y (1986) Cloning of a Drosophila cDNA encoding a polypeptide similar to the human insulin receptor precursor. Biochem Biophys Res Commun 141: 474–481

    Article  PubMed  CAS  Google Scholar 

  • Ottilie S, Raulf F, Barnekow A, Hannig G, Schartl M (1992) Multiple src-related kinase genes, skr1–4, in the fresh water sponge Spongilla lacustris. Oncogene 7: 1625–1630

    PubMed  CAS  Google Scholar 

  • Pfeifer K, Frank W, Schröder HC, Gamulin V, Rinkevich B, Müller IM, Müller WEG (1993a) cDNA cloning of the polyubiquitin gene from the marine sponge Geodia cydonium which is preferentially expressed during reaggregation of cells. J Cell Sci 106: 545–554

    PubMed  CAS  Google Scholar 

  • Pfeifer K, Haasemann M, Ugarkovic D, Bretting H, Fahrenholz F, Müller WEG (1993b) S-type lectins occur also in invertebrates: unusual subunit composition and high conservation of the carbohydrate recognition domain in the lectin genes from the marine sponge Geodia cydonium. Glycobiol 3: 179–184

    Article  CAS  Google Scholar 

  • Russo WM, Lukas TJ, Cohen S, Staros VJ (1985) Identification of residues in the nucleotide binding site of the epidermal growth factor receptor-kinase. J Biol Chem 260: 5205–5208

    PubMed  CAS  Google Scholar 

  • Sadowski I, Stone JC, Pawson T (1985) A noncatalytic domain conserved among cytoplasmic protein-tyrosine kinases modifies the kinase function and transforming activity of Fujinami sarcoma virus P130gag-fps. Mol Cell Biol 6: 4396–4408

    Google Scholar 

  • Sarma AS, Daum T, Müller WEG (1993) Secondary metabolites from marine sponges. Ullstein-Mosby, Berlin

    Google Scholar 

  • Schäcke H, Schröder HC, Gamulin V, Rinkevich B, Müller IM, Müller WEG (1994a) Molecular cloning of a receptor tyrosine kinase from the marine sponge Geodia cydonium: a new member of the receptor tyrosine kinase class II family in invertebrates. Molec Membrane Biol 11: 101–107

    Article  Google Scholar 

  • Schäcke H, Müller WEG, Gamulin V, Rinkevich B (1994b) The Ig superfamily includes members from the lowest invertebrates to the highest vertebrates. Immunol Today 15: 497–498

    Article  PubMed  Google Scholar 

  • Schäcke H, Rinkevich B, Gamulin V, Müller IM, Müller WEG (1994c): Immunoglobulin-like domain is present in the extracellular part of the receptor tyrosine kinase from the marine sponge Geodia cydonium. J Molec Recognition 7: 272–276

    Google Scholar 

  • Schlessinger J, Ullrich A (1992) Growth factor signaling by tyrosine kinases. Neuron 9: 383–391

    Article  PubMed  CAS  Google Scholar 

  • Seeger MA, Haffley L, Kaufman TC (1988) Characterization of amalgam: a member of the immunoglobulin superfamily from Drosophila. Cell 55: 589–600

    Article  PubMed  CAS  Google Scholar 

  • Shishido E, Higashijima S, Emori Y, Saigo K (1993) Two EGF-receptor homologues of Drosophila: one is expressed in mesodermal primordium in early embryos. Development 117: 751–761

    PubMed  CAS  Google Scholar 

  • Shoelson SE, Chatterjee S, Chaudhuri M, White MF (1992) YMXM motifs of IRS-1 define substrate specificity of the insulin receptor kinase. Proc Natl Acad Sci USA 89: 2027–2031

    Article  PubMed  CAS  Google Scholar 

  • Stephens RM, Schneider TD (1992) Features of spliceosome evolution and function inferred from analysis of the information at human splice sites. J Mol Biol 228: 1124–1136

    Article  PubMed  CAS  Google Scholar 

  • Stoddard BL, Biemann HP, Koshland DE (1992) Receptors and transmembrane signaling. Cold Spring Harbor Symp Quant Biol 54: 1–15

    Google Scholar 

  • Sun H, Tonks NK (1994) The coordinated action of protein tyrosine phosphatases and kinases in cell signaling. Trends Biochem Sci 19: 480–485

    Article  PubMed  CAS  Google Scholar 

  • Sun SC, Lindström I, Boman HG, Faye I, Schmidt O (1990) Hemolin: an insect-immune protein belonging to the immunoglobulin superfamily. Science 250: 1729–1732

    Article  PubMed  CAS  Google Scholar 

  • Ullrich A, Schlessinger J (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61: 203–212

    Article  PubMed  CAS  Google Scholar 

  • Ullrich A, Bell JR, Chen EY, Herrera R, Tetruzzelli LM, Dull TJ, Gray A, Coussens L, Liao YC, Tsubokawa M, Mason A, Seeburg PH, Grunfeld C, Rosen OM, Ramachandran J (1985) Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 313: 756–761

    Article  PubMed  CAS  Google Scholar 

  • Ullrich A, Gray A, Tarn AW, Yang-Feng T, Tsubokawa M, Collins C, Henzel W, LeBon T, Kathuria S, Chen E, Jacobs S, Francke U, Ramachandran J, Fujita-Yamagushi Y (1986) Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J 5: 2503–2512

    PubMed  CAS  Google Scholar 

  • Van Hejine G (1987) Sequence analysis in molecular biology. Treasure Trove of Trivial Pursuit. Academic Press, London

    Google Scholar 

  • Williams AF, Barclay AN (1988) The immunoglobulin superfamily — domains for cell surface recognition. Annu Rev Immunol 6: 381–405

    Article  PubMed  CAS  Google Scholar 

  • Zarkower D, Stephenson P, Sheets M, Wickens M (1986) The AAUAAA sequence is required both for cleavage and for polyadenylation of Simian Virus 40 pre-mRNA in vitro. Mol Cell Biol 6: 2317–2323

    PubMed  CAS  Google Scholar 

  • Wilson HV (1907) On some phenomena of coalescence and regeneration in sponges. J Exp Zool 5: 245–258

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müller, W.E.G., Schäcke, H. (1996). Characterization of the Receptor Protein-Tyrosine Kinase Gene from the Marine Sponge Geodia cydonium . In: Csaba, G., Müller, W.E.G. (eds) Signaling Mechanisms in Protozoa and Invertebrates. Progress in Molecular and Subcellular Biology, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80106-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80106-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80108-2

  • Online ISBN: 978-3-642-80106-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics