Skip to main content

Cell-Surface GPI Expression in Protozoa. The Connection with the PI System

  • Chapter
Book cover Signaling Mechanisms in Protozoa and Invertebrates

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 17))

Abstract

Although the basic structure of biological membranes is provided by the lipid bilayer, most of the specific functions are carried out by proteins. Different membrane proteins are associated with the membrane in different ways. Results suggesting hydrophobic nonprotein anchors, e.g., glycosyl-phosphatidylinositol (GPI) were obtained in studies among others on membrane-bound enzymes, antigens, and cell-surface glycoproteins. It is somewhat surprising that a significant portion of proteins expressed at the cell surface (of both unicellular and higher eukaryotes) via GPI anchors, among others hydrolitic enzymes (e.g., aminopeptidase P, alkaline phosphatase, acetylcholinesterase, lipoprotein lipase); mammalian antigens (e.g., Thy 1, Q a, RT-G, CD 14); protozoal antigens [e.g., variant surface glycoprotein (VSG) (Trypanosoma), temperature-specific 156 G antigen (Paramecium), immobilization antigens (Tetrahymena), 195 kDa antigen (Plasmodium)]; cell adhesion molecules (e.g., N-CAM, heparan sulfate proteoglycan, guinea pig sperm PH20, contact side A (Dictyostelium), and another kind of proteins, such as 34-kDa placental growth factor, decay-accelerating factor (DAF), tegument protein (Schistosoma), 125-kDa glycoprotein (Saccharomyces), etc. (reviewed by Ferguson and Williams 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acosta A, Schenkmann RP, Schenkmann S (1994) Sialic acid acceptors of different stages of Trypanosoma cruzi are mucin-like glycoproteins linked to the parasite membrane by GPI anchors. Braz J Med Biol Res 27: 439–442

    PubMed  CAS  Google Scholar 

  • Andrews NW (1994) From lysosomes into the cytosol: the intracellular pathway of Trypanosoma cruzi. Braz J Med Biol Res 27: 471–475

    PubMed  CAS  Google Scholar 

  • Antonny B, Chabre M (1992) Characterization of the aluminium and beryllium fluoride species which activate transducin. J Biol Chem 267: 6110–6118

    Google Scholar 

  • Araya JE, Cano MI, Yoshida N, da-Silveira JF (1994) Cloning and characterization of a gene for the stage-specific 82 kDa surface antigen of metacyclic trypomastigotes of Trypanosoma cruzi. Mol Biol Parasitol 65: 161–169

    Article  CAS  Google Scholar 

  • Azzouz N, Capdeville Y (1992) Structural comparisons between the soluble and the GPI-anchored forms of the Paramecium temperature-specific 156 G surface antigen. Biol Cell 75: 217–223

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (1984) Inositol trisphosphate and diacylglycerol as second messengers. Biochem J 220: 345–360

    PubMed  CAS  Google Scholar 

  • Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315–321

    Article  PubMed  CAS  Google Scholar 

  • Bolivar I, Guiard-Maffia J (1989) Cellular localization of the SerH surface antigen in Tetrahymena thermophila. J Cell Sci 94: 343–354

    PubMed  Google Scholar 

  • Braun-Breton C, Rosenberry TL, da Silva LP (1988) Induction of the proteolytic activity of a membrane protein in Plasmodium falciparum by phosphatidyl inositol-specific phospholipase C. Nature 332: 457–459

    Article  PubMed  CAS  Google Scholar 

  • Buhse HE Jr (1967) Microstome-macrostome transformation in Tetrahymena vorax strain V2 type S induced by a transforming principle, stomatin. J Protozool 14: 608–613

    PubMed  Google Scholar 

  • Buxbaum LU, Raper J, Opperdoes FR, Englund PT (1994) Myristate exchange. A second glycosyl phosphatidylinositol myristoilation reaction in African trypanosomes. J Biol Chem 269: 30212–30220

    PubMed  CAS  Google Scholar 

  • Csaba G (1985) The unicellular Tetrahymena as a model cell for receptor research. Int Rev Cytol 95: 327–377

    Article  PubMed  CAS  Google Scholar 

  • Csaba G (1994) Phylogeny and ontogeny of chemical signaling: origin and development of hormone receptors. Int Rev Cytol 155: 1–48

    Article  PubMed  CAS  Google Scholar 

  • Das S, Traynor-Kaplan A, Kachintorn U, Aley SB, Gillin FD (1994) GP 49, an invariant GPI-anchored antigen of Giardia lamblia. Braz J Med Biol Res 27: 463–469

    PubMed  CAS  Google Scholar 

  • Doering TL, Lu T, Werboretz KA, Gokel GW, Hart GW, Gordon JI, Englund PT (1994) Toxicity of myristic acid analogs toward African trypanosomes. Proc Natl Acad Sci USA 91: 9735–9739

    Article  PubMed  CAS  Google Scholar 

  • Ferguson MA, Williams AF (1988) Cell surface anchoring of proteins via glycosyl-phosphatidylinositol structures. Annu Rev Biochem 57: 285–320

    Article  PubMed  CAS  Google Scholar 

  • Ferguson MA, Masterson WJ, Homans SW, McConville MJ (1991) Evolutionary aspects of GPI metabolism in kinetoplastid parasites. Cell Biol Int Rep 15: 991–1005

    Article  PubMed  CAS  Google Scholar 

  • Ferguson MA, Brimacombe JS, Cottaz S, Field RA, Guther LS, Homans SW, McConville MJ, Mehlert A, Milne KG, Ralton JE (1994) Glycosyl-phosphatidylinositol molecules of the parasite and the host. Parasitology (Suppl) 108: 45–54

    Google Scholar 

  • Fresno M, Hernandez-Murain C, de-Diego J, Rivas L, Scharfstein J, Bonay P (1994) Trypanosoma cruzi: identification of a membrane cystein proteinase linked through a GPI anchor. Braz J Med Biol Res 27: 431–437

    PubMed  CAS  Google Scholar 

  • Kawagoe K, Takeda J, Endo Y, Kinoshita T (1994) Molecular cloning of murine pig-a, a gene for GPI-anchor biosynthesis, and demonstration of interspecies conservation of its structure, function and genetic locus. Genomics 23: 566–574

    Article  PubMed  CAS  Google Scholar 

  • Kelleher M, Moody SF, Mirabile P, Osborn AH, Bacic A, Handman E (1995) Lipophosphoglycan blocks attachment of Leismania major amastigotes to macrophages. Infect Immun 63: 43–50

    PubMed  CAS  Google Scholar 

  • Ko YG, Thompson GA Jr (1992) Immobilization antigens from Tetrahymena thermophila are glycosyl-phosphatidylinositol-linked proteins. J Protozool 39: 719–723

    PubMed  CAS  Google Scholar 

  • Kovács P (1986) The mechanism of receptor development as implied from hormonal imprinting studies on unicellulars. Experientia 42: 770–775

    Article  PubMed  Google Scholar 

  • Kovács P, Csaba G (1990) Involvement of the phosphoinositol (PI) system in the mechanism of hormonal imprinting. Biochem Biophys Res Commun 170: 119–126

    Article  PubMed  Google Scholar 

  • Kovács P, Csaba G (1994a) Effect of insulin on the incorporation of 3H-inositol into the inositol phospholipids (PI, PIP, PIP2) and glycosyl-phosphatidylinositols (GPIs) of Tetrahymena pyriformis. Biosci Rep 14: 215–219

    Article  PubMed  Google Scholar 

  • Kovács P, Csaba G (1994b) Effect of G-protein activating fluorides (NaF, AlF4 and BeF3) on the phospholipid turnover and the PI system of Tetrahymena. Acta Protozool 33: 169–175

    Google Scholar 

  • Kovács P, Csaba G (1995a) The effects of aminosugars (glucosamine, mannosamine) and 2-deoxyfluoroglucose on the phosphatidyl inositol (PI) and glycosyl phosphatidylinositol (GPI) systems of Tetrahymena. Microbios (in press)

    Google Scholar 

  • Kovács P, Csaba G (1995b) Effects of choline and ethanolamine on the synthesis and breakdown of the inositol phospholipid (PI) system in Tetrahymena. Cell Biochem Funct 13: 61–67

    Article  PubMed  Google Scholar 

  • Kovács P, Csaba G (1995c) Effects of G-protein activator fluorides, protein kinase C activator phorbol ester and protein kinase inhibitor on insulin binding and hormonal imprinting of Tetrahymena. Microbios 81: 231–239

    PubMed  Google Scholar 

  • Kovács P, Csaba G (1995d) Effect of phorbol 12-myristate 13-acetate (PMA) on the phosphoinositol (PI) system in Tetrahymena. Study of 32P incorporation and breakdown of phospholipids. Cell Biochem Funct 13: 85–89

    Article  PubMed  Google Scholar 

  • Kovács P, Csaba G (1995e) The effects of local anesthetics and phenothiazines on 32P incorporation into the phosphoinositides and GPI of Tetrahymena pyriformis. Acta Protozool (in press)

    Google Scholar 

  • László V, Csaba G (1992) Phospholipid content of untreated and insulin treated cells of Neurospora crassa (wall-less mutant strain). Acta Microbiol Hung 39: 229–233

    PubMed  Google Scholar 

  • Lisanti MP, Field MC, Caras IWJ, Menon AK, Rodriquez-Boulan E (1991) Mannosamine, a novel inhibitor of glycosylphosphatidylinositol incorporation into proteins. EMBO J 10: 1969–1977

    PubMed  CAS  Google Scholar 

  • Lublin DM (1992) Glycosyl-phosphatidylinositol anchoring of membrane proteins. Curr Topics Microbiol Immunol 178: 141–162

    Article  CAS  Google Scholar 

  • Masterson WJ, Ferguson MA (1991) Phenylmethanesulfonyl fluoride inhibits GPI anchor biosynthesis in the African trypanosome. EMBO J 10: 2041–2045

    PubMed  CAS  Google Scholar 

  • Masterson WJ, Doering TL, Hart GW, Englund PT (1989) A novel pathway for glycan assembly: biosynthesis of the glycosyl-phosphatidylinositol anchor the trypanosome variant surface glycoprotein. Cell 56: 793–800

    Article  PubMed  CAS  Google Scholar 

  • Michell RH (1975) Inositol phospholipids and cell surface receptor function. Biochem Biophys Acta 415: 81–147

    PubMed  CAS  Google Scholar 

  • Misek DE, Saltiel AR (1992) An inositol phosphate glygan derived from a Trypanosoma brucei glycosyl-phosphatidylinositol mimics some of the metabolic actions of insulin. J Biol Chem 267: 16266–16273

    PubMed  CAS  Google Scholar 

  • Müller M (1972) Secretion of acid hydrolases and its intracellular source in Tetrahymena pyriformis. J Cell Biol 52: 478–487

    Article  PubMed  Google Scholar 

  • Nozawa Y, Kovács P, Csaba G (1985) The effects of membrane perturbants, local anesthetics and phenothiazines on hormonal imprinting in Tetrahymena pyriformis. Cell Mol Biol 31: 223–227

    PubMed  CAS  Google Scholar 

  • Pan YT, Elbein AD (1985) The effect of mannosamine on the formation of lipid-linked oligosaccharides and glycoproteins in canine kidney cells. Arch Biochem Biophys 242: 447–456

    Article  PubMed  CAS  Google Scholar 

  • Racagni G, Garcia de Lema M, Domenech CE, Machado de Domenech EE (1992) Phospholipids in Trypanosoma cruzi: phosphoinositide composition and turnover. Lipids 27: 275–278

    Article  PubMed  CAS  Google Scholar 

  • Ryals PE, Pak Y, Thompson GA Jr (1991) Phosphatidylinositol-linked glycans and phosphatidylinositol-anchored proteins of Tetrahymena mimbres. J Biochem 266: 15048–15053

    CAS  Google Scholar 

  • Saltiel AR, Cuatrecasas P (1986) Insulin stimulates the generation from hepatic plasma membranes of modulators derived from an inositol glycolipid. Proc Natl Acad Sci USA 83: 5793–5797

    Article  PubMed  CAS  Google Scholar 

  • Sauma SY, Strand M (1990) Identification and characterization of glycosylphosphatidylinositol-linked Schistosoma mansoni adult worm immunogens. Mol Biochem Parasitol 38: 199–209

    Article  PubMed  CAS  Google Scholar 

  • Schneider P, Schnur LF, Jaffe CL, Ferguson MA, McConville MJ (1994) Glycoinositol-phospholipid profiles of four serotypically distinct Old World Leishmania strains. Biochem J 304: 603–609

    PubMed  CAS  Google Scholar 

  • Sekar MC, Hokin LE (1986) The role of phosphoinositides in signal transduction. J Membr Biol 89: 193–210

    Article  PubMed  CAS  Google Scholar 

  • Smith JD (1993) Phospholipid biosynthesis in protozoa. Prog Lipid Res 32: 47–60

    Article  PubMed  CAS  Google Scholar 

  • Tachado SD, Schofield L (1994) Glycosylphosphatidylinositol toxin of Trypanosoma brucei regulates IL-1 α and TNF-α expression in macrophages by protein tyrosine kinase mediated signal transduction. Biochem Biophys Res Commun 205: 984–991

    Article  PubMed  CAS  Google Scholar 

  • Tomavo S, Dubrenetz JF, Schwarz RT (1992) Biosynthesis of glycolipid precursors for glycosylphosphatidylinositol membrane anchors in a Toxoplasma gondii cell free system. J Biol Chem 267: 21446–21458

    PubMed  CAS  Google Scholar 

  • Webb H, Carnoll N, Carrington M (1994) The role of GPI-PLC in Trypanosoma brucei. Braz J Med Biol Res 27: 349–356

    PubMed  CAS  Google Scholar 

  • Weinhart U, Thomas JR, Pak Y, Thompson GA Jr, Ferguson MA (1991) Structural characterization of a novel glycosyl-phosphatidylinositol from the protozoan Tetrahymena mimbres. Biochem J 279: 605–608

    PubMed  CAS  Google Scholar 

  • Yang X, Ryals PE (1994) Cytodifferentiation in Tetrahymena vorax is linked to glycosyl-phosphatidylinositol-anchored protein assembly. Biochem J 298: 697–703

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kovács, P. (1996). Cell-Surface GPI Expression in Protozoa. The Connection with the PI System. In: Csaba, G., Müller, W.E.G. (eds) Signaling Mechanisms in Protozoa and Invertebrates. Progress in Molecular and Subcellular Biology, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80106-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80106-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80108-2

  • Online ISBN: 978-3-642-80106-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics