Terminology and Knowledge Representation in Complex Domains

  • M. M. Richter
  • G. Schmidt
  • M. Schneider
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)


Research in terminological linguistics has investigated knowledge about basic entities like terms at an informal level. Such entities are considered more and more important in knowledge based systems. However, in a knowledge based system they are needed in a formal representation. The development of knowledge based systems and the formalisation of knowledge is a knowledge acquisition task. In this paper, we show how knowledge acquisition and research in terminological linguistics can be integrated by suggesting a stepwise transformation from an informal description of terms into a formal representation.


Knowledge Acquisition Source Text Knowledge Engineer Subject Field Basic Entity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aussenac-Gilles, N., Bourigault, D., Condamines, A., and Gros, C. (1995): How Can Knowledge Acquisition Benefit from Terminology? Proceedings of 9th Knowledge Acquisition on Knowledge-Based Systems Workshop. Banff, Canada.Google Scholar
  2. Bachmann, B., Bernardi, A., Klauck, Ch., Lelleitner, R. and Rich- Ter, M.M. (1992). Project Proposal, IMCOD (Intelligent Manager for Comprehensive Design). DFKI GmbH, Postfach 2080, 67608 Kaiserslautern.Google Scholar
  3. Gruber, Th. R. (1991): The Role of a Common Ontology in Achieving Sharable, Reusable Knowledge Bases. In: R. Fikes, J. A. Allan and E. Sandewall (eds.): Proc. Z. Int. Conf. on Principles of Knowledge Representation and Reasoning. Morgan Kaufmann, San Mateo, 601–602.Google Scholar
  4. Maurer, F. (1993): Hypermediabasiertes Knowledge Engineering für verteilte wissensbasierte Systeme. DISKI, Band 48, infix, Sankt Augustin.Google Scholar
  5. Meyer, M. (1994): Using Hierarchical Constraint Satisfaction for Lathe-Tool Selection in a Computer-Integrated Manufacturing Environment. Journal of Integrated Computer-Aided Engineering, 3 (1), 241–251.Google Scholar
  6. Neubert, S. (1994): Modellkonstruktion in MIKE Methoden und Werkzeuge. DISKI, Band 60, infix, Sankt Augustin.Google Scholar
  7. Schmidt, G. (1995): Modellbasierte, interaktive Wissensakquisition und Dokumentation von Domänenwissen (MIKADO). DISKI, Band 90, infix, Sankt Augustin.Google Scholar
  8. Wielinga, B., Schreiber, A.Th., and Breuker, J.A. (1992): KADS: A modelling approach to knowledge engineering. Knowledge Acquisition 1 (4), 5–53.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1996

Authors and Affiliations

  • M. M. Richter
    • 1
  • G. Schmidt
    • 1
  • M. Schneider
    • 2
  1. 1.Deutsches Forschungszentrum für Künstliche Intelligenz — GmbHKaiserslauternGermany
  2. 2.Ramat-GanIsrael

Personalised recommendations