Skip to main content

Patterns and Predictability in the Emplacement of Subaerial Lava Flows and Flow Fields

  • Chapter
Monitoring and Mitigation of Volcano Hazards

Abstract

Subaerial lava flows and flow fields show a restricted range of evolutionary sequences. The sequences are related to the traditional classification of pahoehoe, aa and blocky lava, and each is distinguished by a characteristic association of morphological and dynamical features. These features, which include crustal growth and morphology, the formation of lava channels and tubes, the rate and style of flow advance, and the shape and emplacement time of a complete flow field, link processes operating over distances and time intervals that differ from each other by several orders of magnitude. Such links suggest that local observations on newly forming flows (e.g. styles of crustal development) might be sufficient for long-term forecasts of flow growth. The characteristic sequences reflect specific balances between the changing gravitational and pressure forces driving advance and increases in flow resistance due to solidification. The simplest emplacement regime is associated with aa flows, which persistently break their crusts during advance. Constrained by the condition for persistent crustal failure, first-order models provide good descriptions of aa growth trends, as well as a physical basis for forecasting flow behaviour. In particular, they permit estimates of maximum potential flow length and lengthening time from only the mean slope along the expected course of a flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abersten L (1984) Diversion of a lava flow from its natural bed to an artificial channel with the aid of explosives: Etna, 1983. Bull Volcanol 47: 1165–1177

    Google Scholar 

  • Acheson DJ (1990) Elementary fluid dynamics. Clarendon Press, Oxford, pp 1–397

    Google Scholar 

  • Baldwin ED (1953) Notes on the 1880–81 lava flow from Mauna Loa. Volcano Lett 520: 1–3

    Google Scholar 

  • Baloga S (1987) Lava flows as kinematic waves. J Geophys Res 92: 271–279

    Google Scholar 

  • Baloga S, Pieri D (1986) Time-dependent profiles of lava flows. J Geophys Res 91: 543–552

    Google Scholar 

  • Barberi F, Carapezza ML, Valenza M, Villari L (1993) The control of lava flow during the 1991–1992 eruption of Mt. Etna. J Volcanol Geotherm Res 56: 1–34

    Google Scholar 

  • Barca D, Crisci GM, Di Gregorio S, Nicoletta F (1993) Cellular automata methods for modelling lava flows: simulation of the 1986–1987 eruption, Mount Etna, Sicily. In: Kilburn CRJ, Luongo G (eds) Active lavas: monitoring and modelling. UCL Press, London, pp 291–309

    Google Scholar 

  • Benjamin TB (1968) Gravity currents and related phenomena. J Fluid Mech 31: 209–248

    Google Scholar 

  • Blake S (1990) Viscoplastic models of lava domes. In: Fink JH (ed) Lava flows and domes. IAVCEI Proc Volcanol 2: 88–126

    Google Scholar 

  • Borgia A, Linneman SR (1990) On the mechanisms of lava flow emplacement and volcano growth: Arenal, Costa Rica. In: Fink JH (ed) Lava flows and domes. IAVCEI Proc Volcanol 2: 208–243

    Google Scholar 

  • Borgia A, Linneman S, Spencer D, Morales L, Andre L (1983) Dynamics of flow fronts, Arenal volcano, Costa Rica. J Volcanol Geotherm Res 19: 303–329

    Google Scholar 

  • Bruno BC, Taylor GJ, Rowland SK, Lucey PG, Self S (1992) Lava flows are fractals. Geophys Res Lett 19: 305–308

    Google Scholar 

  • Bruno BC, Taylor GJ, Rowland SK, Baloga SM (1994) Quantifying the effect of rheology on lava- flow margins using fractal geometry. Bull Volcanol 56: 193–206

    Google Scholar 

  • Bullard FM (1947) Studies on Paricutin volcano, Mexico. Bull Geol Soc Am 58: 433–450

    Google Scholar 

  • Calvari S, Coltelli M, Neri M, Pompilio M, Scribano V (1994) The 1991–93 Etna eruption: chronology and flow-field evolution. Acta Vulcanol 4: 1–14

    Google Scholar 

  • Chester DK, Duncan AM, Guest JE, Kilburn CRJ (1985) Mount Etna. The anatomy of a volcano. Chapman and Hall, London, pp 1–404

    Google Scholar 

  • Cigolini C, Borgia A, Casertano L (1984) Intra-crater activity, aa-block lava, viscosity and flow dynamics: Arenal Volcano, Costa Rica. J Volcanol Geotherm Res 20: 155–176

    Google Scholar 

  • Colombrita R (1984) Methodology for the construction of earth barriers to divert lava flows: the Mt Etna 1983 eruption. Bull Volcanol 47: 1009–1038

    Google Scholar 

  • Crisp JA, Baloga SM (1990) A model for lava flows with two thermal components. J Geophys Res 95: 1255–1270

    Google Scholar 

  • Crisp J, Baloga S (1994) Influence of crystallization and entrainment of cooler material on the emplacement of basaltic aa flows. J Geophys Res 99: 11, 819–11, 831

    Google Scholar 

  • Crisp J, Cashman KV, Bonini JA, Hougen SB, Pieri DC (1994) Crystallization history of the 1984 Mauna Loa lava flow. J Geophys Res 99: 7177–7198

    Google Scholar 

  • Cristofolini R (1984) L’eruzione etnea del 1983. Atti Accad Gioenia Sci Nat 160: 39–78

    Google Scholar 

  • Cumin G (1954) L’eruzione laterale etnea del novembre 1950 — dicembre 1951. Bull Volcanol 15: 1–70

    Google Scholar 

  • Danes ZF (1972) Dynamics of lava flows. J Geophys Res 77: 1430–1432

    Google Scholar 

  • Dawson JB (1962) The geology of Oldoinyo Lengai. Bull Volcanol 24: 349–389

    Google Scholar 

  • Denlinger RP (1990) A model for dome eruptions at Mount St. Helens, Washington based on subcritical crack growth. In: Fink JH (ed) Lava flows and domes. IAVCEI Proc Volcanol 2: 70–87

    Google Scholar 

  • Didden N, Maxworthy T (1982) The viscous spreading of plane and axisymmetric gravity currents. J Fluid Mech 121: 27–42

    Google Scholar 

  • Dingwell DB, Bagdassarov NS, Bussod GY, Webb SL (1993) Magma rheology. In: Luth RW (ed) Mineral Assoc Canada Short Course Handbook on Experiments at High Pressure and Applications to Earth’s Mantle, vol 21. Mineral Assoc Canada, pp 131–196

    Google Scholar 

  • Di Palma S, Drago F, Galanti E, Pennisi V (1994) Earthen barriers and explosion tests to delay the lava advance: the 1992 Mt Etna experience. Acta Vulcanol 4: 167–171

    Google Scholar 

  • Dragoni M (1989) A dynamical model of lavas cooling by radiation. Bull Volcanol 51: 88–95

    Google Scholar 

  • Dragoni M (1993) Modelling the rheology and cooling of lava flows. In: Kilburn CRJ, Luongo G (eds) Active lavas: monitoring and modelling. UCL Press, London, pp 235–261

    Google Scholar 

  • Dragoni M, Pondrelli S (1991) Lava flow dynamics with vertical temperature variation. Acta Vulcanol 1: 1–5

    Google Scholar 

  • Dragoni M, Tallarico A (1994) The effect of crystallization on the rheology and dynamics of lava flows. J Volcanol Geotherm Res 59: 241–252

    Google Scholar 

  • Dragoni M, Bonafede M, Boschi E (1986) Downslope flow models of a Bingham liquid: implications for lava flows. J Volcanol Geotherm Res 30: 305–325

    Google Scholar 

  • Dragoni M, Pondrelli S, Tallarico A (1992) Longitudinal deformation of a lava flow: the influence of Bingham rheology. J Volcanol Geotherm Res 52: 247–252

    Google Scholar 

  • Dragoni M, Piombo A, Tallarico A (1995) A model for the formation of lava tubes by roofing over a channel. J Geophys Res 100: 8435–8447

    Google Scholar 

  • Dutton CE (1884) Hawaiian volcanoes. US Geol Surv 4th Annu Rep. US Gov Print Off, Washington, pp 47–112

    Google Scholar 

  • Einarsson T (1949) The eruption of Hekla 1947–1948: IV, 3. The flowing lava. Studies of its main physical and chemical properties. Soc Scientarium Islandica, Reykjavik, pp 1–70

    Google Scholar 

  • Emerson OH (1926) The formation of aa and pahoehoe. Am J Sci 12: 109–114

    Google Scholar 

  • Feder J (1988) Fractals. Plenum, New York, pp 1–283

    Google Scholar 

  • Finch RH, Macdonald GA (1953) Hawaiian volcanoes during 1950. US Geol Surv Bull 996B. US Gov Print Off, Washington, pp 1–89

    Google Scholar 

  • Fink JH (1993) The emplacement of silicic lava flows and associated hazards. In: Kilburn CRJ, Luongo G (eds) Active lavas: monitoring and modelling. UCL Press, London, pp 5–24

    Google Scholar 

  • Fink JH, Griffiths RW (1990) Radial spreading of viscous-gravity currents with solidifying crust, J Fluid Mech 221: 485–501

    Google Scholar 

  • Fink JH, Griffiths RW (1992) A laboratory analog study of the surface morphology of lava flows extruded from point and line sources. J Volcanol Geotherm Res 54:19–32

    Google Scholar 

  • Frazzetta G, Romano R (1984) The 1983 Etna eruption: event chronology and morphological evolution of the lava flow. Bull Volcanol 47: 1079–1096

    Google Scholar 

  • Gaonac’h H, Lovejoy S, Stix J (1992) Scale invariance of basaltic lava flows and their fractal dimensions. Geophys Res Lett 19: 785–788

    Google Scholar 

  • Geikie A (1885) Text-book of geology. Macmillan, London, pp 1–992

    Google Scholar 

  • Greeley R (1971) Observations of actively forming lava tubes and associated structures, Hawaii. Mod Geol 2: 207–223

    Google Scholar 

  • Greeley R (1987) The role of lava tubes in Hawaiian volcanoes. US Geol Surv Prof Paper 1350. US Gov Print Off, Washington, pp 1589–1602

    Google Scholar 

  • Greeley R, Lee SW, Crown DA, Lancaster N (1990) Observations of industrial sulfur flows: implications for Io. Icarus 60: 189–199

    Google Scholar 

  • Griffiths RW, Fink JH (1992a) Solidification and morphology of submarine lavas: a dependence on extrusion rate. J Geophys Res 97: 19, 729–19, 737

    Google Scholar 

  • Griffiths RW, Fink JH (1992b) The morphology of lava flows in planetary environments: predictions from analog experiments. J Geophys Res 97: 19, 379–19, 748

    Google Scholar 

  • Griffiths RW, Fink JH (1993) Effects of surface cooling on the spreading of lava flows and domes. J Fluid Mech 252: 667–702

    Google Scholar 

  • Guest JE, Murray JB (1979) An analysis of hazard from Mount Etna volcano. J Geol Soc Lond 136: 347–354

    Google Scholar 

  • Guest JE, Underwood JR, Greeley R (1980) Role of lava tubes in flows from the Observatory Vent, 1971 eruption on Mount Etna. Geol Mag 117: 601–606

    Google Scholar 

  • Guest JE, Kilburn CRJ, Pinkerton H, Duncan AM (1987) The evolution of lava flow fields: Observations of the 1981 and 1983 eruptions of Mount Etna, Sicily. Bull Volcanol 49: 527–540

    Google Scholar 

  • Hallworth MA, Huppert HE, Sparks RSJ (1987) A laboratory simulation of basaltic lava flows. Mod Geol 11: 93–107

    Google Scholar 

  • Harrison CGA, Rooth C (1976) The dynamics of flowing lavas. In: Aoki H, Iizuka S (eds) Volcanoes and tectonosphere. Tokai University Press, Tokai, pp 103–113

    Google Scholar 

  • Hon K, Kauahikaua J, Denlinger R, McKay K (1994) Emplacement and inflation of pahoehoe sheet flows — observations and measurements of active lava flows on Kilauea volcano, Hawaii. Geol Soc Am Bull 106: 351–370

    Google Scholar 

  • Hughes JW, Guest JE, Duncan AM (1990) Changing styles of effusive eruption on Mount Etna since AD 1600. In: Ryan MP (ed) Magma transport and storage. John Wiley, London, pp 385–405

    Google Scholar 

  • Hulme G (1973) Turbulent lava flow and the formation of lunar sinuous rilles. Mod Geol 4: 107 – 117

    Google Scholar 

  • Hulme G (1974) The interpretation of lava flow morphology. Geophys J R Astron Soc 39: 361–383

    Google Scholar 

  • Hulme G (1982) A review of lava flow processes related to the formation of lunar sinuous rifles. Geophys Surv 5: 245–279

    Google Scholar 

  • Hulme G, Fielder G (1977) Effusion rates and rheology of lunar lavas. Philos Trans R Soc Lond A285: 227–234

    Google Scholar 

  • Huppert HE (1982a) The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface. J Fluid Mech 121: 43–58

    Google Scholar 

  • Huppert HE (1982b) Flow and instability of a viscous current down a slope. Nature 300: 427–429

    Google Scholar 

  • Huppert HE, Sparks RSJ (1985) Komatiites: eruption and flow. J Petrol 26: 694–725

    Google Scholar 

  • Huppert HE, Shepherd JB, Sigurdsson H, Sparks RSJ (1982) On lava dome growth, with application to the 1979 extrusion of the Soufriere of St Vincent. J Volcanol Geotherm Res 14: 199 – 222

    Google Scholar 

  • Huppert HE, Sparks RSJ, Turner JS, Arndt NT (1987) Emplacement and cooling of komatiite lavas. Nature 309: 19–22

    Google Scholar 

  • Ishihara K, Iguchi M, Kamo K (1990) Numerical simulation of lava flows on some volcanoes in Japan. In: Fink JH (ed) Lava flows and domes. IAVCEI Proc Volcanol 2: 174–207

    Google Scholar 

  • Iverson RM (1990) Lava domes modeled as brittle shells that enclose pressurized magma, with application to Mount St Helens. In: Fink JH (ed) Lava flows and domes. IAVCEI Proc Volcanol 2: 47–69

    Google Scholar 

  • Jaupart C (1991) Effects of compressibility on the flow of lava. Bull Volcanol 54: 1–9

    Google Scholar 

  • Jaupart C (1992) The eruption and spreading of lava. In: Yuen DA (ed) Chaotic processes in the Earth Sciences. IMA Vol Math Appl 41. Springer, Berlin Heidelberg New York, pp 175–203

    Google Scholar 

  • Jeffreys H (1925) Flow of water in an inclined channel of rectangular section, London Edinburgh Dublin Philos Mag J Sci 49: 793–807

    Google Scholar 

  • Kilburn CRJ (1990) Surfaces of aa flow-fields on Mount Etna, Sicily: Morphology, rheology, crystallization and scaling phenomena. In: Fink JH (ed) Lava flows and domes. IAVCEI Proc Volcanol 2: 129–156

    Google Scholar 

  • Kilburn CRJ (1993) Lava crusts, aa flow lengthening and the pahoehoe-aa transition. In: Kilburn CRJ, Luongo G (eds) Active lavas: monitoring and modelling. UCL Press, London, pp 263 – 280

    Google Scholar 

  • Kilburn CRJ, Guest JE (1993) Aa lavas of Mount Etna, Sicily. In: Kilburn CRJ, Luongo G (eds) Active lavas: monitoring and modelling. UCL Press, London, pp 73–106

    Google Scholar 

  • Kilburn CRJ, Lopes RMC (1988a) The growth of aa lava flow fields on Mount Etna, Sicily. J Geophys Res 93: 14, 759–14, 772

    Google Scholar 

  • Kilburn CRJ, Lopes RMC (1988b) Lava thicknesses: implications for rheological and crustal development. Lunar Planet Sci Inst Contrib 660: 9–11

    Google Scholar 

  • Kilburn CRJ, Lopes RMC (1991) General patterns of flow field growth: Aa and blocky lavas. J Geophys Res 96: 19, 721–19, 732

    Google Scholar 

  • Kilburn CRJ, Pinkerton H, Wilson L (1994) Forecasting the behaviour of lava flows. In: McGuire WJ, Kilburn CRJ, Murray JB (eds) Monitoring active volcanoes. UCL Press, London, pp 346–368

    Google Scholar 

  • Kouchi AA, Tsuchiyama A, Sunagawa I (1986) Effect of stirring on crystallization kinetics of basalt: texture and element partitioning. Contrib Mineral Petrol 93: 429–438

    Google Scholar 

  • Krauskopf KB (1948) Lava movement at Paricutin volcano, Mexico. Bull Geol Soc Am 59:1267 – 1283

    Google Scholar 

  • Linneman SR, Borgia A (1993) The blocky andesitic lava flows of Arenal volcano, Costa Rica. In: Kilburn CRJ, Luongo G (eds) Active lavas: monitoring and modelling. UCL Press, London, pp 25–71

    Google Scholar 

  • Lipman PW, Banks NG (1987) Aa flow dynamics, Mauna Loa 1984. US Geol Surv Prof Paper 1350. US Gov Print Off, Washington, pp 1527–1567

    Google Scholar 

  • Lipman PW, Banks NG, Rhodes JM (1985) Gas-release induced crystallization of 1984 Mauna Loa magma, Hawaii, and effects on lava rheology. Nature 317: 604–606

    Google Scholar 

  • Lister JR (1992) Viscous flows down an inclined plane from point and line sources. J Fluid Mech 242: 631–653

    Google Scholar 

  • Liu KF, Mei CC (1989) Slow spreading of a sheet of Bingham fluid on an inclined plane. J Fluid Mech 207: 505–529

    Google Scholar 

  • Lockwood JP, Banks NG, English TT, Greenland LP, Jackson DB, Johnson DJ, Koyanagi RY, McGee KA, Okamura AT, Rhodes JM (1984) The 1984 eruption of Mauna Loa volcano, Hawaii. EOS Trans Am Geophys Union 66: 169–171

    Google Scholar 

  • Lockwood JP, Lipman PW, Petersen LD, Washaner PR (1988) Generalized ages of surface lava flows of Mauna Loa volcano, Hawaii (1:250,000). US Geol Surv Map I-1908

    Google Scholar 

  • Lopes RMC, Guest JE (1982) Lava flows on Etna, a morphometric study In: Coradini A, Fulchignoni M (eds) The comparative study of the planets. D Reidel, Hingham, pp 441–458

    Google Scholar 

  • Lopes RMC, Kilburn CRJ (1990) Emplacement of lava flow fields: application of terrestrial studies to Alba Patera, Mars. J Geophys Res 95: 14, 383–14, 397

    Google Scholar 

  • Lyell C (1872) Principles of geology or changes of the Earth and its inhabitants, vol 1 (11th rev edn). John Murray, London

    Google Scholar 

  • Macdonald GA (1953) Pahoehoe, aa and block lava. Am J Sci 251: 169–191

    Google Scholar 

  • Macdonald GA (1967) Forms and structures of extrusive basaltic rock. In: Poldervaart AA, Hess HH (eds) The Poldervaart treatise on rocks of basaltic composition, vol 1, Basalts. Wiley- Interscience, New York, pp 1–61

    Google Scholar 

  • Macdonald GA (1972) Volcanoes. Prentice-Hall, Englewood Cliffs, pp 1–510

    Google Scholar 

  • Malin MC (1980) Lengths of Hawaiian lava flows. Geology 8: 306–308

    Google Scholar 

  • Manley CR (1992) Extended cooling and viscous flow of large, hot rhyolite lavas: implications of numerical modelling results. J Volcanol Geotherm Res 53: 27–46

    Google Scholar 

  • McBirney AR, Murase T (1984) Rheological properties of magmas. Annu Rev Earth Planet Sci 12: 337–357

    Google Scholar 

  • Murase T, McBirney AR (1973) Properties of some common igneous rocks and their melts at high temperature. Geol Soc Am Bull 84: 3563–3592

    Google Scholar 

  • Murrell SAF, Chakravarty S (1973) Some new rheological experiments in igneous rocks at temperatures up to 1120 °C. Geophys J R Astron Soc 34: 211–250

    Google Scholar 

  • Naranjo JA, Sparks RSJ, Stasiuk MV, Moreno H, Ablay GJ (1992) Morphological, structural and textural variations in the 1988–1990 andesite lava of Lonquimay Volcano, Chile. Geol Mag 129: 657–678

    Google Scholar 

  • Nichols RL (1936) Flow units in basalt. J Geol 44: 617–630

    Google Scholar 

  • Pai S-I (1956) Viscous flow theory. I. Laminar flow. Van Nostrand, Princeton, pp 1–384

    Google Scholar 

  • Panton RL (1984) Incompressible flow. John Wiley, New York, pp 1–780

    Google Scholar 

  • Paterson WSB (1981) The physics of glaciers, 2nd edn. Pergamon, Oxford, pp 1–380

    Google Scholar 

  • Peterson DW, Swanson DA (1974) Observed formation of lava tubes. Stud Speleol 2: 209–222

    Google Scholar 

  • Peterson DW, Tilling RI (1980) Transition of basaltic lava from pahoehoe to aa, Kilauea volcano, Hawaii: field observations and key factors. J Volcanol Geotherm Res 7: 271–293

    Google Scholar 

  • Peterson DW, Holcomb RT, Tilling RI, Christiansen RL (1994) Development of lava tubes in the light of observations at Mauna Ulu, Kilauea volcano, Hawaii. Bull Volcanol 56: 343–350

    Google Scholar 

  • Pieri DC, Baloga SM (1986) Eruption rates, areas and length relationships for some Hawaiian lava flows. J Volcanol Geotherm Res 30: 29–45

    Google Scholar 

  • Pinkerton H (1993) Measuring the properties of flowing lavas. In: Kilburn CRJ, Luongo G (eds) Active lavas: monitoring and modelling. UCL Press, London, pp 175–191

    Google Scholar 

  • Pinkerton H, Sparks RSJ (1976) The 1974 sub-terminal lavas, Mount Etna: A case history of the formation of a compound flow field. J Volcanol Geotherm Res 1: 167–182

    Google Scholar 

  • Pinkerton H, Sparks RSJ (1978) Field measurements of the rheology of lava. Nature 276: 383–384

    Google Scholar 

  • Pinkerton H, Stevenson RJ (1992) Methods of determining the rheological properties of magmas at sub-liquidus temperatures. J Volcanol Geotherm Res 53: 47–66

    Google Scholar 

  • Pinkerton H, Wilson L (1994) Factors controlling the lengths of channel-fed lava flows. Bull Volcanol 56: 108–120

    Google Scholar 

  • Pinkerton H, Norton GE, Dawson JB, Pyle DM (1995) Field observations and measurements of the physical properties of Oldoinyo Lengai alkali carbonatite lavas, November 1988. In: Bell K, Keller J (eds) Carbonatite volcanism. IAVCEI Proc Volcanol 4: 23–36

    Google Scholar 

  • Ponte G (1923) The recent eruption of Etna. Nature 112: 546–548

    Google Scholar 

  • Robson GR (1967) Thickness of Etnean lavas. Nature 216: 251–252

    Google Scholar 

  • Rowland SK, Munro DC (1993) The 1919–20 eruption of Mauna Iki, Kilauea: chronology, geologic mapping, and magma transport mechanisms. Bull Volcanol 55: 190–202

    Google Scholar 

  • Rowland SK, Walker GPL (1987) Toothpaste lava: characteristics and origin of a lava structural type transitional between pahoehoe and aa. Bull Volcanol 49: 631–641

    Google Scholar 

  • Rowland SK, Walker GPL (1990) Pahoehoe and aa in Hawaii: volumetric flow rate controls the lava structure. Bull Volcanol 52: 615–628

    Google Scholar 

  • Ryan MP, Sammis CG (1981) The glass transition in basalt. J Geophys Res 86: 9516–9539

    Google Scholar 

  • Schwartz LW, Michaelides EE (1988) Gravity flow of a viscous liquid down a slope with injection. Phys Fluids 31: 739–741

    Google Scholar 

  • Scrope GP (1856) On the formation of craters, and the nature of the liquidity of lavas. Q J Geol Soc Lond 12: 326–350

    Google Scholar 

  • Shaw HR (1969) Rheology of basalt in the melting range. J Petrol 10: 510–535

    Google Scholar 

  • Shaw HR (1972) Viscosities of magmatic silicate liquids: an empirical method of prediction. Am J Sci 272: 870–893

    Google Scholar 

  • Shaw HR, Swanson DA (1970) Eruption and flow rates of flood basalts. Proc 2nd Columbia River Basalt Symp, East Wash State College Press, Cheney, pp 271–299

    Google Scholar 

  • Shaw HR, Wright TL, Peck DL, Okamura R (1968) The viscosity of basaltic magma: an analysis of field measurements in Makaopuhi lava lake, Hawaii. Am J Sci, 261: 255–264

    Google Scholar 

  • Shepherd JB, Aspinall WP, Rowley KC, Periera J, Sigurdsson H, Fiske RS, Tomblin JF (1979) The eruption of Soufriere Volcano, St Vincent, April-June 1979. Nature 282: 24–28

    Google Scholar 

  • Smith PC (1973) A similarity solution for slow viscous flow down an inclined plane. J Fluid Mech 58: 275–288

    Google Scholar 

  • Sparks RSJ, Pinkerton H (1978) Effect of degassing on the rheology of basaltic lava. Nature 276: 385–386

    Google Scholar 

  • Sparks RSJ, Pinkerton H, Hulme G (1976) Classification and formation of lava levees on Mount Etna, Sicily. Geology 4: 269–271

    Google Scholar 

  • Stasiuk MV, Jaupart C, Sparks RSJ (1993) Influence of cooling on lava-flow dynamics. Geology 21: 335–338

    Google Scholar 

  • Swanson DA (1973) Pahoehoe flows from the 1969–1971 Mauna Ulu eruption, Kilauea volcano, Hawaii. Geol Soc Am Bull 84: 615–626

    Google Scholar 

  • USGS (1986) Hawaii volcanos National Park and vicinity, Hawaii, 1:100,000 topographic map. US Geol Surv Nat Park Serv, Reston

    Google Scholar 

  • Vassale R (1994) The use of explosive for the diversion of the 1992 Mt Etna flow. Acta Vulcanol 4: 173–177

    Google Scholar 

  • Volpe A, Tonoli G (1984) Rodio cooling chambers. Bull Volcanol 47: 1051–1056

    Google Scholar 

  • Wadge G (1978) Effusion rate and the shape of aa lava flow fields on Mount Etna. Geology 6: 503–506

    Google Scholar 

  • Wadge G, Lopes RMC (1991) The lobes of lava flows on Earth and Olympus Mons. Bull Volcanol 54: 10–24

    Google Scholar 

  • Wadge G, Young PAV, McKendrick IJ (1994) Mapping lava flow hazards using computer simulation. J Geophys Res 99: 489–504

    Google Scholar 

  • Walker GPL (1967) Thickness and viscosity of Etnean lavas. Nature 213: 484–485

    Google Scholar 

  • Walker GPL (1971) Compound and simple lava flows and flood basalts. Bull Volcanol 35: 579–590

    Google Scholar 

  • Walker GPL (1973) Lengths of lava flows, Philos Trans R Soc Lond Ser A 274: 107–118

    Google Scholar 

  • Walker GPL (1974) Volcanic hazards and the prediction of volcanic eruptions. Geol Soc London Misc Paper 3: 23–41

    Google Scholar 

  • Walker GPL (1987) Pipe vesicles in Hawaiian basaltic lavas: their origin and potential as paleoslope indicators. Geology 15: 84–87

    Google Scholar 

  • Walker GPL (1989) Spongy pahoehoe in Hawaii: a study of vesicle-distribution patterns in basalt and their significance. Bull Volcanol 51: 199–209

    Google Scholar 

  • Walker GPL (1991) Structure, and origin by injection under surface crust, of tumuli, “lava rises”, “lava-rise pits”, and “lava-inflation clefts” in Hawaii. Bull Volcanol 53: 546–558

    Google Scholar 

  • Watanabe T (1940) Eruptions of molten sulphur from the Siretoko-Iosan volcano, Hokkaido, Japan. Jpn Geol Geogr Trans Abstr 17: 289–310

    Google Scholar 

  • Wentworth CK, Macdonald GA (1953) Structures and forms of basaltic rocks in Hawaii. US Geol Surv Bull 994. US Gov Print Off, Washington, pp 1–98

    Google Scholar 

  • Whitehead JA, Helfrich KR (1991) Instability of a flow with temperature-dependent viscosity: a model of magma dynamics. J Geophys Res 96: 4145–4155

    Google Scholar 

  • Williams H, McBirney AR (1979) Volcanology. Freeman, Cooper, San Francisco, pp 1–396

    Google Scholar 

  • Wilson L, Head JW (1983) A comparison of eruption processes on Earth, Moon, Mars, Io and Venus. Nature 302: 663–669

    Google Scholar 

  • Wolfe EW, Neal CA, Banks NG, Duggan TJ (1988) Geologic observations and chronology of eruptive events. In: Wolfe EW (ed) The Puu Oo eruption of Kilauea Volcano, Hawaii: Episodes 1 through 20, January 3, 1983, through June 8, 1984, US Geol Surv Prof Pap, 1463. US Gov Print Off, Washington, pp 1–97

    Google Scholar 

  • Young PAV, Wadge G (1990) FLOWFRONT: simulation of a lava flow. Comput Geosci 16: 1171–1191

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kilburn, C.R.J. (1996). Patterns and Predictability in the Emplacement of Subaerial Lava Flows and Flow Fields. In: Monitoring and Mitigation of Volcano Hazards. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80087-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80087-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80089-4

  • Online ISBN: 978-3-642-80087-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics