Skip to main content

Modulations of Cellular Interactions During Development of the Neural Crest: Role of Growth Factors and Adhesion Molecules

  • Chapter
Immunology and Developmental Biology of the Chicken

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 212))

Abstract

The recent progress in the description of new growth, survival, differentiation and adhesion factors, the characterization of their biological activities, combined with the identification of new transcription factors have led to the emergence of new concepts that allow development of new strategies for elucidating the mechanisms that control embryonic development. The neural crest is certainly one of the embryonic systems that has benefited most from this burst of knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akitaya T, Bronner-Fraser M (1992) Expression of cell adhesion molecules during initiation of and cessation of neural crest cell migration. Dev Dynam 194: 12–20

    Article  CAS  Google Scholar 

  • Anderson DJ (1989). The neural crest cell lineage problem: neuropoiesis? Neuron 3: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Augustine K, Liu ET, Sadler TW (1993). Antisense attenuation of Wnt-1 and Wnt-3a expression in whole embryo culture reveals roles for these genes in craniofacial spinal cord, and cardiac morphogenesis. Dev Genet 14: 500–520

    Article  PubMed  CAS  Google Scholar 

  • Baird A (1994). Fibroblast growth factors: activities and significance of non-neurotrophin neurtrophic growth factors. Curr Opin Neurobiol 4: 78–86

    Article  PubMed  CAS  Google Scholar 

  • Bancroft M, Bellairs R (1976). The neural crest cells of the trunk region of the chick embryo studied by SEM and TEM. Zoon 4: 73–85

    Google Scholar 

  • Basler K, Edlund T, Jessell TM, Yamada T (1993). Control of cell pattern in the neural tube: Regulation of cell differentiation by dorsalin-1, a novel TGFß family member. Cell 73: 687–702

    Article  PubMed  CAS  Google Scholar 

  • Blystone SD, Graham IL, Lindberg FP, Brown EJ (1994). Integrin avß3 differentially regulates adhesive and phagocytic functions of the fibronectin receptor a5131. J Cell Biol 127: 1129–1137

    Article  PubMed  CAS  Google Scholar 

  • Boucaut J-C, Darribère T, Poole TJ, Aoyama H, Yamada KM, Thiery JP (1984). Biological active synthetic peptides as probes of embryonic development: a competitive peptide inhibitor of fibronectin function inhibits gastrulation in amphibian embryos and neural crest cell migration in avian embryos. J Cell Biol 99: 1822–1830

    Article  PubMed  CAS  Google Scholar 

  • Brauer PR, Yee JA (1993). Cranial neural crest cells synthesize and secrete a latent form of transforming growth factor-ß that can be activated by neural crest cell proteolysis. Dev Biol 155: 281–285

    Article  PubMed  CAS  Google Scholar 

  • Brauer PR, Bolender DL, Markwald RR (1985). The distribution and spatial organization of the extracellular matrix encountered by mesencephalic neural crest cells. Anat Rect 211: 57–68

    Article  CAS  Google Scholar 

  • Bronner-Fraser M (1986). An antibody to receptor for fibronectin and laminin perturbs cranial neural crest development in vivo. Dev Biol 117: 528–536

    Article  PubMed  CAS  Google Scholar 

  • Bronner-Fraser M, Lallier T (1988). A monoclonal antibody against a laminin-heparan sulfate proteoglycan complex perturbs cranial neural crest migration in vivo. J. Cell Biol 106: 1321–1329 Bronner-Fraser M, Fraser S (1989). Developmental potential of avian trunk neural crest cells in situ. Neuron 3: 755–766

    Article  PubMed  CAS  Google Scholar 

  • Bronner-Fraser M, Fraser S (1989). Developmental potential of avian trunk neural crest cells in situ. Neuron 3: 755–766

    Article  PubMed  CAS  Google Scholar 

  • Bronner-Fraser M, Wolf JJ, Murray BA (1992a). Effects of antibodies against N-cadherin and N-CAM on the cranial neural crest and neural tube. Dev Biol 153: 291–301

    Article  PubMed  CAS  Google Scholar 

  • Bronner-Fraser M, Artinger M, Muschler J, Horwitz AF (1992b). Developmentally regulated expression of (6 integrin in avian embryos. Development 115: 197–211

    PubMed  CAS  Google Scholar 

  • Chan WY, Tam PPL (1988). A morphological and experimental study of the mesencephalic neural crest cells in the mouse embryo using wheat germ agglutinin-gold conjugate as the cell marker. Development 102: 427–442

    PubMed  CAS  Google Scholar 

  • Cochard P, Coltey P (1983). Cholinergic traits in the neural crest. acetylcholinesterase in crest cells of the chick embryo. Dev Biol 98: 221–228

    Article  PubMed  CAS  Google Scholar 

  • Collazo A, Bronner-Fraser M, Fraser SE (1993). Vital dye labelling of Xenopus laevis trunk neural crest reveals multipotency and novel pathways of migration. Development 118: 363–376

    PubMed  CAS  Google Scholar 

  • Delannet M, Duband J.-L (1992). Transforming growth factor-13 control of cell-substratum adhesion during avian neural crest cell emigration in vitro. Development 116: 275–287

    PubMed  CAS  Google Scholar 

  • Delannet M, Martin F, Bossy B, Cheresh DA, Reichardt LF, Duband J-L (1994). Specific roles of the aV131, V133 and aVf35 integrins in avian neural crest cell adhesion and migration on vitronectin. Development 120: 2687–2702

    PubMed  CAS  Google Scholar 

  • Duband J-L, Thiery JP (1982a). Distribution of fibronectin in the early phase of avian cephalic neural crest cell migration. Dev Biol 93: 308–323

    Article  PubMed  CAS  Google Scholar 

  • Duband J-L, Thiery JP (1982b). Appearance and distribution of fibronectin during chick embryo gastrulation and neurulation. Dev Biol 94: 337–350

    Article  PubMed  CAS  Google Scholar 

  • Duband J-L, Thiery JP (1987). Distribution of laminin and collagens during avian neural crest development. Development 101: 461–478

    PubMed  CAS  Google Scholar 

  • Duband J-L, Tucker GC, Poole TJ, Vincent M, Aoyama H, Thiery JP (1985). How do the migratory and adhesive properties of the neural crest govern ganglia formation in the avian peripheral nervous system? J Cell Biochem 27: 189–203

    Article  PubMed  CAS  Google Scholar 

  • Duband J-L, Volberg T, Sabanay I, Thiery JP, Geiger B (1988). Spatial and temporal distribution of the adherens-junction-associated adhesion molecule A-CAM during avian embryogenesis. Development 103: 325–344

    PubMed  CAS  Google Scholar 

  • Duband JL, Belkin AM, Syfrig J, Thiery JP, Koteliansky VE (1992). Expression of al integrin, a laminincollagen receptor, during myogenesis and neurogenesis in the avian embryo. Development 116: 585–600

    PubMed  CAS  Google Scholar 

  • Dufour S, Duband JL, Humphries MJ, Obara M, Yamada KM, Thiery JP (1988). Attachement, spreading and locomotion of avian neural crest cells are mediated by multiple adhesion sites on fibronectin molecules. EMBO J 7: 2661–2671

    PubMed  CAS  Google Scholar 

  • Erickson CA (1987). Behavior of neural crest cells on embryonic basal laminae. Dev Biol 120: 38–49

    Article  PubMed  CAS  Google Scholar 

  • Erickson CA, Weston J (1983). An SEM analysis of neural crest cell migration in the mouse. J. Embryol Exp Morphol 74: 97–118

    PubMed  CAS  Google Scholar 

  • Flanders KC, Lüdecke G, Engels S, Cissel DS, Roberts AB, Kondaiah P, Lafyatis R, Sporn MB, Unsicker K (1991). Localization and actions of transforming growth factor-3s in the embryonic nervous system. Development 113: 183–191

    PubMed  CAS  Google Scholar 

  • Hatta K, Takagi S, Fujisawa H, Takeichi M (1987). Spatial and temporal expression pattern of N-cadherin cell adhesion molecules correlated with morphogenetic processes of chicken embryos. Dev Biol 120: 215–227

    Article  PubMed  CAS  Google Scholar 

  • Hinck L, Nelson WJ, Papkoff J (1994). Wnt-1 modulates cell-cell adhesion in mammalian cells by stabilizing ß-catenin binding to the cell adhesion protein cadherin. J Cell Biol 124: 729–741

    Article  PubMed  CAS  Google Scholar 

  • Hirsch MR, Gaugler L, Deagostini-Bazin H, Bally-Cuif L, Goridis C (1990). Identification of positive and negative regulatory elements governing cell-type specific expression of the neural cell adhesion molecule gene. Mol Cell Biol 10: 1959–1968

    PubMed  CAS  Google Scholar 

  • Ho L, Symes K, Yordan C, Gudas LJ, Mercola M (1994). Localization of PDGF-A and PDGFRa mRNA in Xenopus embryos suggests signalling from neural ectoderm and pharyngeal endoderm to neural crest cells. Mech Dev 48: 165–174

    Article  PubMed  CAS  Google Scholar 

  • Hodivala KJ, Watt FM (1994). Evidence that cadherins play a role in the downregulation of integrin expression that occurs during keratinocyte terminal differentiation J Cell Biol 124: 589–600.

    CAS  Google Scholar 

  • Holst BD, Goomer RS, Wood IC, Edelman GM, Jones FS (1994). Binding and activation of the promoter for the neural cell adhesion molecule by Pax-8. J Biol Chem 269: 22245–22252

    PubMed  CAS  Google Scholar 

  • Hoschuetzky H, Aberle H, Kemler R (1994). 3-catenin mediates the interaction of the cadherin-catenin complex with epidermal growth factor receptor. J Cell Biol 127: 1375–1380

    Article  PubMed  CAS  Google Scholar 

  • Humphries MJ (1990). The molecular basis and specificity of integrin-ligand interactions J Cell Sci 97: 585–592

    CAS  Google Scholar 

  • Inuzuka H, Redies C, Takeichi M (1991). Differential expression of R- and N- cadherin in neural and mesodermal tissues during early chicken development. Development 113: 959–967

    PubMed  CAS  Google Scholar 

  • Kalcheim C, Le Douarin NM (1986). Requirement of a neural tube signal for the differentiation of neural crest cells into dorsal root ganglia. Dev Biol 116: 451–466

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita Y, Kinoshita C, Heuer JG, Bothwell M (1993). Basic fibroblast growth factor promotes adhesive interactions of neuroepithelial cells from chick neural tube with extracellular matrix proteins in culture. Development 119: 943–956

    PubMed  CAS  Google Scholar 

  • Lallier T, Deutzmann R, Perris R, Bronner-Fraser M (1994). Neural crest cell interactions with laminin: structural requirements and localization of the binding site for al ß1 integrin. Dev Biol 162: 451–464

    Article  PubMed  CAS  Google Scholar 

  • Le Douarin NM (1982). The neural crest. Cambridge University Press, Cambridge

    Google Scholar 

  • Le Douarin NM, Ziller C, Couly GF (1993). Patterning of neural crest derivatives in the avian embryo: in vivo and in vitro studies. Dev Biol 159: 24–49

    Article  PubMed  Google Scholar 

  • Löfberg J, Ahlfors K (1978). Extracellular matrix organization and early neural crest cell migration in the Axolotl embryo. Zoon 6: 87–101

    Google Scholar 

  • Löfberg J, Ahlfors K, Fällström C (1980). Neural crest cell migration in relation to extracellular matrix organization in the embryonic Axolotl trunk. Dev Biol 75: 148–167

    Article  PubMed  Google Scholar 

  • Löfberg J, Nynäs-McCoy A, Olsson C, Jonsson L, Perris R (1985). Stimulation of initial neural crest cell migration in the axolotl embryo by tissue grafts and extracellular matrix transplanted on micro-carriers. Dev Biol 107: 442–459

    Article  PubMed  Google Scholar 

  • Mansouri A, Stoykova A, Gruss P (1994). Pax genes in development. J Cell Sci Suppl 18: 35–42

    PubMed  CAS  Google Scholar 

  • Maroulakou IG, Papas TS, Green JE (1994). Differential expression of ets-1 and ets-2 proto-oncogenes during murine embryogenesis. Oncogene 9: 1551–1565

    PubMed  CAS  Google Scholar 

  • Martins Green M, Erickson CA (1986). Development of neural tube basal lamina during neurulation and neural crest cell emigration in the trunk of the mouse embryo. J Embryol Exp Morphol 98: 219–236

    PubMed  CAS  Google Scholar 

  • Martins-Green M, Erickson CA (1987). Basal lamina is not a barrier to neural crest cell emigration: documentation by TEM and by immunofluorescent and immunogold labelling. Development 101: 517–533

    PubMed  CAS  Google Scholar 

  • Massagué J (1990). The transforming growth factor-(3 family. Annu Rev Cell Biol 6: 597–641

    Article  PubMed  Google Scholar 

  • Meyer D, Wolff C-M, Stiegler P, Sénan F, Befort N, Befort JJ, Remy P (1993). X1-fli, the Xenopus homologue of the fli gene, is expressed during embryogenesis in a restricted pattern evocative of neural crest cell distribution. Mech Dev 44: 109–121

    Article  PubMed  CAS  Google Scholar 

  • Milian FA, Denhez F, Kondaiah P, Akhurst P, Akhurst RJ, (1991). Embryonic gene expression patterns of TGF 131, 132, and 133 suggest different developmental functions in vivo Development 111: 131–144

    Google Scholar 

  • Mitchell PJ, Timmons PM, Hébert JM, Rigby PWJ, Tjian R (1991). Transcription factor AP-2 is expressed in neural crest cell lineages during mouse embryogenesis. Genes Dev 5: 105–119

    Article  PubMed  CAS  Google Scholar 

  • Moase CE, Trasler DG (1990). Delayed neural crest cell emigration from Sp and Sp’ mouse neural tube explants. Teratology 42: 171–182

    Article  PubMed  CAS  Google Scholar 

  • Moase CE, Trasler DG (1991). N—CAM alterations in splotch neural tube defect mouse embryos. Development 113: 1049–1058

    PubMed  CAS  Google Scholar 

  • Monier F, Duband J.-L (1995). Control of N-cadherin-mediated intercellular adhesion in migrating neural crest cells in vitro (submitted)

    Google Scholar 

  • Moon RT, DeMarais A, Olson DJ (1993). Response to Wnt signals in vertebrate embryos may involve changes in cell adhesion and cell movement. J Cell Sci [Suppl] 17: 183–188

    CAS  Google Scholar 

  • Morrison-Graham K, Schatteman GC, Bork T, Bowen-Pope DF, Weston JA (1992). A PDGF receptor mutation in the mouse ( Patch) perturbs the development of a non-neuronal subset of neural crest-derived cells. Development 115: 133–142

    PubMed  CAS  Google Scholar 

  • Moury JD, Jacobson AG (1989). Neural fold formation at newly created boundaries between neural plate and epidermis in the axolotl. Dev Biol 133: 44–57

    Article  PubMed  CAS  Google Scholar 

  • Moury JD, Jacobson AG (1990). The origins of neural crest cells in the axolotl. Dev Biol 141: 243–253

    Article  PubMed  CAS  Google Scholar 

  • Nathan C, Sporn M (1991). Cytokines in context. J Cell Biol 113: 981–986

    Article  PubMed  CAS  Google Scholar 

  • Newgreen DF, Erickson CA (1986). The migration of neural crest cells. Int Rev Cytol 103: 89–145

    Article  PubMed  CAS  Google Scholar 

  • Newgreen DF, Gibbins IL (1982). Factors controlling the time of onset of the migration of neural crest cells in the fowl embryo. Cell Tissue Res 224: 145–160

    Article  PubMed  CAS  Google Scholar 

  • Nichols DH (1981). Neural crest formation in the head of the mouse embryo as observed using a new histological technique. J Embryol Exp Morphol 64: 105–120

    PubMed  CAS  Google Scholar 

  • Nieto MA, Sargent MG, Wilkinson DG, Cooke J (1994). Control of cell behavior during vertebrate development by Slug, a zinc finger gene. Science 264: 835–839

    Article  PubMed  CAS  Google Scholar 

  • Nusse R, Varmus HE (1992). Wnt genes Cell 69: 1073–1087

    CAS  Google Scholar 

  • Perris R, Krotoski D, Bronner-Fraser M (1991a). Collagens in avian neural crest development: Distribution in vivo and migration-promoting ability in vitro. Development 113: 969–984

    PubMed  CAS  Google Scholar 

  • Perris R, Krotoski D, Lallier T, Domingo C, Sorrell JM, Bronner-Fraser M (1991b). Spatial and temporal changes in the distribution of proteoglycans during avian neural crest development. Development 111: 583–599

    PubMed  CAS  Google Scholar 

  • Pintar JE (1978). Distribution and synthesis of glycosaminoglycans during quail neural crest morpho-genesis. Dev Biol 67: 444–464

    Article  PubMed  CAS  Google Scholar 

  • Poole TJ, Thiery JP (1986). Antibodies and a synthetic peptide that block cell-fibronectin adhesion arrest neural crest cell migration in vivo Prog Clin Biol Res 217B: 235–238

    Google Scholar 

  • Pratt RM, Larsen MA, Johnston MC (1975). Migration of cranial neural crest cells in a cell-free hyaluronate-rich matrix. Dev Biol 44: 298–305

    Article  PubMed  CAS  Google Scholar 

  • Ranscht B, Bronner-Fraser M (1991). T-cadherin expression alternates with migrating neural crest cells in the trunk of the avian embryo. Development 111: 15–22

    PubMed  CAS  Google Scholar 

  • Rissi M, Wittbrodt J, Délot E, Naegeli M, Rosa FM (1995). Zebrafish Radar: a new member of the TGF3 superfamily defines dorsal regions of the neural plate and the embryonic retina. Mech Dev 49: 223–234

    Article  PubMed  CAS  Google Scholar 

  • Rosen GD, Brikenmeier TM, Dean DC (1991). Characterization of the a4 integrin gene promoter. Proc Nati Acad Sci USA 88: 4094–4098

    Article  CAS  Google Scholar 

  • Rosen EM, Nigam SK, Goldberg ID (1994). Scatter factor and the c-met receptor: a paradigm for mesenchymal/epithelial interaction. J Cell Biol 127: 1783–1787

    Article  PubMed  CAS  Google Scholar 

  • Rubenstein JLR, Puelles L (1994). Homeobox gene expression during development of the vertebrate brain. Curr Top Dev Biol 29: 1–65

    Article  PubMed  CAS  Google Scholar 

  • Scherson T, Serbedzija G, Fraser S, Bronner-Fraser M (1993). Regulative capacity of the cranial neural tube to form neural crest. Development 118: 1049–1061

    PubMed  CAS  Google Scholar 

  • Schmid P, Cox D, Bilbe G, Maier R, McMaster GK (1991). Differential expression of TGF 01, P2,133 genes during mouse embryogenesis. Development 111: 117–130

    PubMed  CAS  Google Scholar 

  • Selleck MAJ, Bronner-Fraser M (1995). Origins of the avian neural crest: The role of neural plate-epidermal interactions. Development 121: 525–538

    PubMed  CAS  Google Scholar 

  • Serbedzija GN, Bronner-Fraser M, Fraser SE (1994). Developmental potential of trunk neural crest cells in the mouse. Development 120: 1709–1718

    PubMed  CAS  Google Scholar 

  • Sonnenberg E, Meyer D, Weidner KM, Birchmeier C (1993). Scatter factor/hepatocyte growth factor and its receptor the c-met tyrosine kinase, can mediate a signal exchange between mesenchyme and epithelia during mouse development. J Cell Biol 123: 223–235

    Article  PubMed  CAS  Google Scholar 

  • Spence SG, Argraves WS, Walters L, Hungerford JE, Little CD (1992). Fibulin is localized at sites of epithelial-mesenchymal transitions in the early avian embryo. Dev Biol 151: 473–484

    Article  PubMed  CAS  Google Scholar 

  • Spieth J, Keller RE (1984). Neural crest cell behavior in white and dark larvae of Ambystoma mexicanum: differences in cell morphology, arrangement and extracellular matrix as related to migration. J Exp Zool 229: 91–107

    Article  PubMed  CAS  Google Scholar 

  • Stemple DL, Anderson DJ (1993). Lineage diversification of the neural crest: In vitro investigations Dev Biol 159: 12–23

    CAS  Google Scholar 

  • Stepp MA, Urry LA, Hynes RO (1994). Expression of a4 integrin mRNA and protein and fibronectin in the early chicken embryo. Cell Adhes Commun 2: 359–375

    Article  PubMed  CAS  Google Scholar 

  • Sternberg J, Kimber SJ (1986). The relationship between emerging neural crest cells and basement membranes in the trunk of the mouse embyo: a TEM and immunocytochemical study. J Embryol Exp Morphol 98: 251–268

    PubMed  CAS  Google Scholar 

  • Thiery JP, Duband J-L, Rutishauser U, Edelman GM (1982a). Cell adhesion molecules in early chicken embryogenesis. Proc Natl Acad Sci USA 79: 6737–6741

    Article  PubMed  CAS  Google Scholar 

  • Thiery JP, Duband J-L, Delouvée A (1982b). Pathways and mechanism of avian trunk neural crest cell migration and localization. Dev Biol 93: 324–343

    Article  PubMed  CAS  Google Scholar 

  • Thiery JP, Delouvée A, Grumet M, Edelman GM (1985). Appearance and distribution of the neuron glia cell adhesion molecule (Ng-CAM) in the chick embryo J Cell Biol 100: 442–456

    CAS  Google Scholar 

  • Tosney KW (1978). The early migration of neural crest cells in the trunk region of the avian embryo: An electron microscopic study. Dev Biol 62: 317–333

    Article  PubMed  CAS  Google Scholar 

  • Tosney KW (1982). The segregation and early migration of cranial neural crest cells in the avian embryo. Dev Biol 89: 13–24

    Article  PubMed  CAS  Google Scholar 

  • Valarché I, Tissier-Seta J-P, Hirsch M-R, Martinez S, Goridis C, Brunet J-F (1993). The mouse homeodomain protein Phox2 regulates Ncam promoter activity in concert with Cux/CDP and is a putative determinant of neurotransmitter phenotype. Development 119: 881–896

    PubMed  Google Scholar 

  • Vandenbunder B, Pardanaud L, Jaffredo T, Mirabel MA, Stehelin D (1989). Complementary patterns of expression of c-ets 1, c-myb and c-myc in the blood-forming system of the chick embryo. Development 106: 265–274

    Google Scholar 

  • Weidner KM, Behrens J, Vandekerckhove J, Birchmeier W (1990). Scatter factor: molecular characteristics and effect on the invasiveness of epithelial cells. J Cell Biol 111: 2097–2108

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Duband, J.L., Delannet, M., Monier, F., Garret, S., Desban, N. (1996). Modulations of Cellular Interactions During Development of the Neural Crest: Role of Growth Factors and Adhesion Molecules. In: Vainio, O., Imhof, B.A. (eds) Immunology and Developmental Biology of the Chicken. Current Topics in Microbiology and Immunology, vol 212. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80057-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80057-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80059-7

  • Online ISBN: 978-3-642-80057-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics