Immunotherapy of Severe Sepsis and Septic Shock: Is there a Future?

  • C. Martin
  • X. Viviand
  • F. Potié
Part of the Yearbook of Intensive Care and Emergency Medicine book series (YEARBOOK, volume 1996)


Sepsis syndrome [1] and septic shock are always associated with a high rate of mortality. It has been estimated that in Western Europe, 400000 to 500000 cases of sepsis syndrome are diagnosed each year with 40 to 70% of the patients developing septic shock. Mortality is at approximately 40% in cases of sepsis syndrome with gram-negative bacteremia [2–4], 50% with hypotension [2–5] and can reach 70–90% in cases of shock with multiple organ failure (MOF) [2–7]. The pathogenic and physiopathologic complexity of sepsis syndrome can, in large part, explain the difficulties encountered in establishing therapeutic strategies. The number of mediators and cells are unlimited (Fig. 1) and new mediators are regularly isolated (adhesion molecules, endothelin-1 … !)


Septic Shock Severe Sepsis Septic Shock Patient Sepsis Syndrome Bactericidal Permeability Increase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bone RC (1991) Sepsis, the sepsis syndrome, multiple organ failure: A plea for comparable definitions. Ann Intern Med 114: 332–333PubMedGoogle Scholar
  2. 2.
    Centers for Disease Control (1990) Increase in national hospital discharge survey rates for septicemia. Morbidity Mortality Weekly Report 39: 31–34Google Scholar
  3. 3.
    Ziegler EJ, McCutchan JA, Fierer J, et al (1982) Treatment of gram-negative bacteremia and shock with human antiserum to a mutant Escherichia coli. New Engl J Med 307: 1225–1230PubMedCrossRefGoogle Scholar
  4. 4.
    Ziegler EJ, Fisher CJ, Sprung CL, et al (1991) Treatment of gram-negative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin. New Engl J Med 324: 429–436PubMedCrossRefGoogle Scholar
  5. 5.
    Sprung CL, Caralis PV, Martial EH, et al (1984) The effects of high dose corticosteroids in patients with septic shock. New Engl J Med 311: 1137–1143PubMedCrossRefGoogle Scholar
  6. 6.
    Kaufman BS, Rackow EC, Falk JL (1984) The relationship between oxygen delivery and consumption during fluid resuscitation of hypovolemic and septic shock. Chest 85: 336–340PubMedCrossRefGoogle Scholar
  7. 7.
    Veterans Administration Systemic Sepsis Cooperative Study Group (1987) Effect of high-dose glucocorticoid therapy on mortality in patients with clinical signs of systemic sepsis. New Engl J Med 317: 659–665CrossRefGoogle Scholar
  8. 8.
    Michie HR, Manogue KR, Spriggs DR, et al (1988) Detection of circulating tumor necrosis factor after endotoxin administration. New Engl J Med 318: 1481–1486PubMedCrossRefGoogle Scholar
  9. 9.
    Baumgartner JD, Glauser MP (1987) Controversies in the use of passive immunotherapy for bacterial infections in the critically ill patient. Rev Infect Dis 9: 194–205PubMedCrossRefGoogle Scholar
  10. 10.
    Zinner SH, McCabe WR (1976) Effects of IgM and IgG antibody in patients with bacteremia due to gram-negative bacilli. J Infect Dis 133: 37–45PubMedCrossRefGoogle Scholar
  11. 11.
    Lachman E, Pitsoe SB, Gaffin SL (1984) Anti-lipopolysaccharide immunotherapy in management of septic shock of obstetrical and gynaecological origin. Lancet 1: 981–983PubMedCrossRefGoogle Scholar
  12. 12.
    Fomsgaard A, Back L, Fomsgaard JS, Engquist A (1989) Preliminary study on treatment of septic shock patients with antilipopolysaccharide IgG from blood donors. Scand J Infect Dis 21: 697–708PubMedCrossRefGoogle Scholar
  13. 13.
    Schedel I, Dreikhaussen U, Neutwig B, et al (1991) Treatment of gram-negative septic shock with an immunoglobulin preparation: A prospective, randomized clinical trial. Crit Care Med 19: 1104–1113PubMedCrossRefGoogle Scholar
  14. 14.
    Baumgartner JD, Glauser PG, McCutchan JA, et al (1985) Prevention of gram-negative shock and death in surgical patients by antibody to endotoxin core glycolipid. Lancet 2: 59–63PubMedCrossRefGoogle Scholar
  15. 15.
    Calandra T, Glauser MP, Schellekens J, Verhoef J and the Swiss-Dutch J5 immunoglobulin Study Group (1988) Treatment of gram-negative septic shock with human IgG antibody to Escherichia coli J5: A prospective, double-blind, randomized trial. J Infect Dis 158: 312–319PubMedCrossRefGoogle Scholar
  16. 16.
    J5 Study Group (1992) Treatment of severe infectious purpura in children with human plasma from donors immunized with Escherichia coli J5: A prospective, double-blind study. J Infect Dis 165: 695–701CrossRefGoogle Scholar
  17. 17.
    McCutchan JA, Wolf JL, Ziegler EJ, Brande AI (1988) Ineffectiveness of single-dose human antiserum to core glycolipid (Escherichia coli J5) for prophylaxis of bacteremic, gram-negative infection in patients with prolonged neutropenia. Schw Mediz Woch 113 (Suppl.): 40–45Google Scholar
  18. 18.
    The Intravenous Immunoglobulin Collaborative Study Group (1992) Prophylactic intravenous administration of standard immune globulin as compared with core-lipopolysaccharidic immune globulin in patients at risk of postsurgical infection. New Engl J Med 327: 234–240CrossRefGoogle Scholar
  19. 19.
    Calandra T, Baumgartner JD (1995) Anti-endotoxin therapy. In: Sibbald WJ, Vincent JL (Eds) “Critical trials for the treatment of sepsis” Update in Intensive Care and Emergency Medicine, Vol 19. Springer-Verlag, Berlin, pp 237–250Google Scholar
  20. 20.
    Baumgartner JD, Heumann D, Glauser MP (1991) The HA-1A monoclonal antibody for gram-negative sepsis. New Engl J Med 325: 281–282Google Scholar
  21. 21.
    Luce JM (1993) Introduction of new technology into critical care practice: A history of HA-1A human monoclonal antibody against endotoxin. Crit Care Med 21: 1233–1241PubMedCrossRefGoogle Scholar
  22. 22.
    Siegel JP, Stein KE, Zoon KC (1992) Anti-endotoxin monoclonal antibodies (the FDA reply). New Engl J Med 327: 890–891Google Scholar
  23. 23.
    Wenzel RP (1992) Anti-endotoxin monoclonal antibodies. A second look. New Engl J Med 326: 1151–1153PubMedCrossRefGoogle Scholar
  24. 24.
    Wenzel RP, Andriole T, Bartlett JG (1992) Antiendotoxin monoclonal antibodies for gram-negative sepsis: Guidelines from the Infectious Disease Society of America. Clin Infect Dis 14: 973–976PubMedCrossRefGoogle Scholar
  25. 25.
    Ziegler EJ, Smith CR (1992) Anti-endotoxin monoclonal antibodies. New Engl J Med (Letter) 326: 1165Google Scholar
  26. 26.
    McCloskey RV, Straube RC, Sanders C, Smith CR and the CHESS Trial Study Group (1994) Treatment of septic shock with human monoclonal antibody HA-1A: A randomized, double-blind, placebo-controlled trial period. Ann Intern Med 121: 1–5PubMedGoogle Scholar
  27. 27.
    Anonyme (1994) The french national registry of HA-1A (Centoxin) in septic shock. A cohort study of 600 patients. Arch Intern Med 154: 2484–2491CrossRefGoogle Scholar
  28. 28.
    Kett DH, Quartin AA, Sprung CL, et al (1994) An evaluation of the hemodynamic effects of HA-1A human monoclonal antibody. Crit Care Med 22: 1227–1234PubMedCrossRefGoogle Scholar
  29. 29.
    Greenmam RL, Schein RMH, Martin MA, et al (1991) A controlled clinical trial of E5 murine monoclonal IgM antibody to endotoxin in the treatment of gram-negative sepsis. JAMA 266: 1097–1102CrossRefGoogle Scholar
  30. 30.
    Bone RC, Balk RA, Fein AM, et al (1995) A second large controlled clinical study of E5, a monoclonal antibody to endotoxin: Results of a prospective, multicenter, randomized, controlled trial. Crit Care Med 23: 994–1006PubMedCrossRefGoogle Scholar
  31. 31.
    Wenzel R, Bone RC, Feui A, et al (1991) Results of a second double-blind randomized controlled trial of antiendotoxin antibody E5 in gram-negative sepsis. 31st ICAAC Chicago N° 1170 (Abst)Google Scholar
  32. 32.
    Greenberg RN, Wilson KM, Kunz AY, Wedel NI, Gorelick KJ (1992) Observations using antiendotoxin antibody (E5) as adjuvant therapy in humans with suspected serious gram-negative sepsis. Crit Care Med 20: 730–735PubMedCrossRefGoogle Scholar
  33. 33.
    Morrison DC, Silverstein R, Parmely MJ (1992) Novel approaches to the treatment of septic shock. In: Vincent JL (Ed) Yearbook of Intensive Care and Emergency Medicine. Springer Verlag, Berlin, pp 91–103Google Scholar
  34. 34.
    Proctor RA, Will JA, Burhop KE, Raetz CRH (1986) Protection of mice against lethal endotoxemia by a lipid A precursor. Infect Immun 52: 905–907PubMedGoogle Scholar
  35. 35.
    Marra MN, Thornton MB, Snable JL (1994) Endotoxin-binding and neutralizing properties of recombinant bactericidal/permeability-increasing protein and monoclonal antibodies HA-1A and E5. Crit Care Med 22: 559–565PubMedCrossRefGoogle Scholar
  36. 36.
    Fisher CJ Jr, Marra MN, Palardy JE (1994) Human neutrophil bactericidal/permeabilityincreasing protein reduces mortality rate from endotoxin challenge. A placebo-controlled study. Crit Care Med 22: 553–558PubMedCrossRefGoogle Scholar
  37. 37.
    Dofferhoff ASM, Vellenga E, Limburg PC, et al (1991) Tumor necrosis factor (cachectin) and other cytokines in septic shock: A review of the literature. Neth J Med 39 : 45–62PubMedGoogle Scholar
  38. 38.
    Hesse DG, Tracey KJ, Fong Y, et al (1988) Cytokine appearance in human endotoxemia and primate bacteremia. Surg Gynecol Obstet 166: 147–153PubMedGoogle Scholar
  39. 39.
    Tracey KJ, Vlasara H, Cerami A (1989) Cachectin/tumor necrosis factor. Lancet 1: 1122–1126PubMedCrossRefGoogle Scholar
  40. 40.
    Beutler B, Cerami A (1986) Cachectin and tumor necrosis factor as two sides of the same biological coin. Nature 320: 584–588PubMedCrossRefGoogle Scholar
  41. 41.
    Beutler B, Cerami A (1987) Cachectin: More than a tumor necrosis factor. New Engl J Med 316: 379–385PubMedCrossRefGoogle Scholar
  42. 42.
    Beutler B, Milsark IW, Cerami AC (1985) Passive immunization against cachectin/ tumor necrosis factor protects mice from lethal effect of endotoxin. Science 229: 869–871PubMedCrossRefGoogle Scholar
  43. 43.
    Tracey KJ, Beutler B, Lowry SF, et al (1986) Shock and tissue injury induced by recombinant human cachectin. Science 234: 470–473PubMedCrossRefGoogle Scholar
  44. 44.
    Mathison J C, Wolfson E, Ulevitch RJ (1988) Participation of tumor necrosis factor in the mediation of gram-negative bacterial lipopolysaccharide-induced injury in rabbits. J Clin Invest 81: 1925–1937PubMedCrossRefGoogle Scholar
  45. 45.
    Silva AT, Bayston KF, Cohen J (1990) Prophylactic and therapeutic effects of a monoclonal antibody to tumor necrosis factor-a in experimental gram-negative shock. J Infect Dis 162: 421–427PubMedCrossRefGoogle Scholar
  46. 46.
    Tracey KJ, Fong Y, Hesse DG, et al (1987) Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteremia. Nature 330: 662–664PubMedCrossRefGoogle Scholar
  47. 47.
    Hinshaw LB, Tekamp-Olson P, Chang ACK, et al (1990) Survival of primates in LD 100 septic shock following therapy with antibody to tumor necrosis factor (TNF-α). Circ Shock 30: 279–292PubMedGoogle Scholar
  48. 48.
    Opal SM, Cross AS, Kelly NM, et al (1990) Efficacy of a monoclonal antibody directed against tumor necrosis factor in protecting neutropenic rats from lethal infection with Pseudomonas aeruginosa. J Infect Dis 161: 1148–1152PubMedCrossRefGoogle Scholar
  49. 49.
    Duerr ML, Valdenz CM, Emersonte Hinshaw LB, Fournel MA (1991) Serum kinetics of cytokine after TNF-a monoclonal antibody (MAb) treatment in gram-negative and positive bacteremic baboon models. 31st ICAAC Chicago N° 538 (Abst)Google Scholar
  50. 50.
    Wayne J, Silva A, Cohen J (1991) Role of tumor necrosis factor (TNF) in experimental gram-positive sepsis. 31st ICAAC Chicago n° 789 (Abst)Google Scholar
  51. 51.
    Bagdy GJ, Plessala KJ, Wilson LA, Thompson JJ, Nelson S (1991) Divergent efficacy of antibody to tumor necrosis factor-a in intravascular and peritonitis models of septic shock. J Infect Dis 163: 83–88CrossRefGoogle Scholar
  52. 52.
    Zanetti G, Kohler J, Heumann D, et al (1991) Failure of anti-TNF MAb in preventing death in peritonitis-induced gram-negative bacteremia in mice. 31st ICAAC Chicago N°790 (Abst)Google Scholar
  53. 53.
    Collins MS, Mehton NS, Hector RF, Ladehoff DK, Noonan JS (1991) Treatment of acute peritonitis in young swine with gentamicin and a monoclonal antibody against tumor necrosis factor α. 31st ICAAC Chicago N° 540 (Abst)Google Scholar
  54. 54.
    Opal SM, Cross AS, Sadoff JC, et al (1991) Efficacy of anti-lipopoly-saccharide and antitumor necrosis factor monoclonal antibodies in a neutropenic model of Pseudomonas sepsis. J Clin Invest 88: 885–890PubMedCrossRefGoogle Scholar
  55. 55.
    Franks AK, Kujawa KI, Yaffe LJ (1991) Experimental elimination of tumor necrosis factor in low-dose endotoxin models has variable effects on survival. Infect Immunol 59: 2609–2614Google Scholar
  56. 56.
    Silva AT, Appelmelk BJ, Baurman WA, Bayston KF, Cohen J (1990) Monoclonal antibody to endotoxin core protects mice from Escherichia coli sepsis by a mechanism independent of tumor necrosis factor and intedeukin 6. J Infect Dis 162: 454–459PubMedCrossRefGoogle Scholar
  57. 57.
    Exley AR, Cohen J, Buurman W, et al (1990) Monoclonal antibody to TNF in severe septic shock. Lancet 2: 1275–1277CrossRefGoogle Scholar
  58. 58.
    Fisher CJ Jr, Opal SM, Dhainaut JF, et al (1994) Influence of an anti-tumor necrosis factor monoclonal antibody on cytokine levels in patients with sepsis. Crit Care Med 21: 318–327CrossRefGoogle Scholar
  59. 59.
    Dhainaut JF, Vincent JL, Richard C, et al (1994) CDP 571, a CDR-grafted anti-human TNF-a antibody in septic shock: Safety, pharmacokinetics and influence on cytokine levels. Am J Respir Crit Care Med 149: A241 (Abst)Google Scholar
  60. 60.
    Zimmerman JL, Dillon K, Campbell W, Reinhart K (1994) Phase I/II trial of cA2, a chimeric anti-TNF antibody in patients with sepsis. Intensive Care Med 20: S151 (Abst)Google Scholar
  61. 61.
    Boekstegers P, Weidenhöfer S, Zell R, et al (1994) Repeated administration of a F(ab’)2 fragment of an anti-tumor necrosis factor α monoclonal antibody in patients with severe sepsis: Effects on the cardiovascular system and cytokine levels. Shock 1: 237–245PubMedCrossRefGoogle Scholar
  62. 62.
    Reinhart K, Wiegand C, Kaul M (1994) Anti-TNF strategies with monoclonal antibody. Preliminary results with the specific monoclonal antibody MAK 195F. Intensive Care Med 20:S151 (Abst)Google Scholar
  63. 63.
    Abraham E, Wunderink R, Silverman H, et al (1995) Efficacy and safety of monoclonal antibody to human tumor necrosis factor α in patients with sepsis syndrome. JAMA 273: 934–941PubMedCrossRefGoogle Scholar
  64. 64.
    Offenstadt G, Cadet J, Cohen J, et al (1995) Intersept: Etude internationale de l’efficacite et de la tolérancé d’un anticorps monoclonal (Ac) anti-TNF humain dans Ie syndrome septique (SS). Réanim Med Urg (Suppl) n° 75 (Abst)Google Scholar
  65. 65.
    Wherry J, Wenzel R, Wunderink R, et al (1993) Monoclonal antibody to human tumor necrosis factor (TNF mab): Multicenter efficacy and safety in patients with the sepsis syndrome, 33rd ICAAC Chicago n° 696 (Abst)Google Scholar
  66. 66.
    Agosti JM, Fisher CJ Jr, Opal SM, Lowry SF, Balk RA, Sardoff JC (1994) The sTNFR Sepsis Study Group: Treatment of patients with sepsis syndrome with soluble TNF receptor (sTNF). 34th ICAAC Chicago n° M4 (Abst)Google Scholar
  67. 67.
    Van der Poll T, Lowry SF (1995) Tumor necrosis factor in sepsis: Mediator of multiple organ failure or essential part of host defense? Shock 3: 1–12PubMedGoogle Scholar
  68. 68.
    Seckinger P, Lowenthal JW, Williamson K, Dayer JM, McDonald HR (1987) A murine inhibitor of interleukin-1 activity that blocks ligand binding. J Immunol 139: 1546–1549PubMedGoogle Scholar
  69. 69.
    Alexander HR, Doherty GM, Buresh CM, Venzon DJ, Norton JA (1991) A recombinant human receptor antagonist to interleukin-1 improves survival after lethal endotoxemia in mice. J Exp Med 173: 1029–1032PubMedCrossRefGoogle Scholar
  70. 70.
    Ohlsson K, Björk P, Bergenfeldt M, Hageman R, Thompson RC (1990) Interleukin-1 receptor antagonist reduces mortality from endotoxin shock. Nature 348: 550–552PubMedCrossRefGoogle Scholar
  71. 71.
    Fisher CJ Jr, Slotman GJ, Opal SM, et al (1994) Initial evaluation of human recombinant interleukin-1 receptor antagonist in the treatment of sepsis syndrome: A randomized, open-label, placebo-controlled multicenter study. Crit Care Med 22: 12–21PubMedGoogle Scholar
  72. 72.
    Fisher JC Jr, Dhainaut JF, Opal SM, et al (1994) Recombinant human interleukin-1 receptor antagonist in the treatment of patients with the sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. JAMA 271: 1836–1843PubMedCrossRefGoogle Scholar
  73. 73.
    Starnes HF, Pearce MK, Tewari A, Yim JH, Zou J, Abrams JS (1990) Anti IL-6 monoclonal antibodies protect against lethal Escherichia coli infection and lethal tumor necrosis factor-a challenge in mice. J Immunol 145: 4185–4191PubMedGoogle Scholar
  74. 74.
    Redmond HP, Chavin KD, Bromberg JS, Daly JM (1991) Inhibition of macrophageactivating cytokines is beneficial in the acute septic response. Ann Surg 214: 502–509PubMedCrossRefGoogle Scholar
  75. 75.
    Dhainaut JF, Tenaillon A, Le Tulzo Y, et al (1994) Platelet activating factor receptor antagonist BN 52021 in the treatment of severe sepsis: A randomized, double-blind, placebo-controlled, multicenter clinical trial. Crit Care Med 22: 1720–1728PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • C. Martin
  • X. Viviand
  • F. Potié

There are no affiliations available

Personalised recommendations