Skip to main content

On the Role of Microcracking in the Dynamic Fracture of Polymethylmethacrylate

  • Conference paper
Contemporary Research in Engineering Science
  • 255 Accesses

Abstract

The morphology of the fracture surface of polymethylmethacrylate (PMMA) is interpreted to show that dynamic fracture of PMMA is predominantly by microcrack nucleation and coalescence. A numerical simulation using a very simple nucleation and growth model for the microcracks is shown to duplicate the fracture surface morphology adequately. These results are then interpreted to indicate the onset of a periodic banding morphology that is typically observed in PMMA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.K. Green, and P.L Pratt, “Measurement of the dynamic fracture toughness of polymethylmethacrylate by high-speed photography”, Engineering Fracture Mechanics, 6, (1974), p. 71.

    Article  Google Scholar 

  2. W. Doll, “Transition from slow to fast crack propagation in PMMA”, Journal of Materials Science, 11, (1976), p. 2348.

    Article  Google Scholar 

  3. J. Fineberg, S.P. Gross, M. Marder, and H.L Swinney, “Instability in dynamic fracture”, Physical Review Letters, 67, (1991), p. 457.

    Article  Google Scholar 

  4. P.D. Washabaugh, and W.G. Knauss, “Nonsteady periodic behavior in the dynamic fracture of PMMA”, International Journal of Fracture, 59, (1993), p. 189.

    Article  Google Scholar 

  5. K. Ravi-Chandar, and W.G. Knauss, (1984), “An experimental investigation into dynamic fracture - EL Microstructural aspects”, International Journal of Fracture, 26, p. 65.

    Article  Google Scholar 

  6. K. Ravi-Chandar, and W.G. Knauss, “An experimental investigation into dynamic fracture - III. On steady state crack propagation and crack branching”, International Journal of Fracture, 26, (1984), p. 141.

    Article  Google Scholar 

  7. P.D. Washabaugh, and W.G. Knauss, “A reconciliation of dynamic crack velocity and Rayleigh wave speed in isotropic brittle solids”, International Journal of Fracture, 65, (1994), p. 95.

    Google Scholar 

  8. E. Johnson, “Process region changes for rapidly propagating cracks”, International Journal of Fracture, 55, (1992), p. 47.

    Article  Google Scholar 

  9. M. Marder, and S. Gross, “Origin of crack tip instabilities”, Journal of the Mechanics and Physics of Solids, 43, (1995).

    Google Scholar 

  10. H. Gao, “Surface roughening and branching instabilities in dynamic fracture”, Journal of the Mechanics and Physics of Solids, 41, (1993), p. 457.

    Article  Google Scholar 

  11. K. Ravi-Chandar, and W.G. Knauss, “Dynamic crack tip stresses under stress wave loading - A comparison of theory and experiment”, International Journal of Fracture, 20, (1982), p. 209.

    Article  Google Scholar 

  12. C.E. Feltner, University of Illinois, T amp; AM Report No 224, (1962).

    Google Scholar 

  13. J. Leeuwerik, “Kinematic features of the brittle fracture phenomenon”, Kheologica Acta, 2, (1962), p. 10.

    Article  Google Scholar 

  14. B. Cotterell, “Fracture propagation in organic glasses”, International Journal of Fracture Mechanics, 4, (1968), p. 209.

    Article  Google Scholar 

  15. K. Matsushinge, Y. Sakurada and K. Takahashi, “X-ray microanalysis and acoustic emission studies on the formation mechanism of secondary cracks in PMMA”, Journal of Materials Science, 19, (1984), p. 1548.

    Article  Google Scholar 

  16. J. Carlsson, L. Dahlberg and F. Nilsson, “Experimental studies of the unstable phase of crack propagation in metals and polymers”, in Dynamic Crack Propagation, edited by G.C. Sih, Noordhoff International Publishing, Leyden, (1973), p. 165.

    Google Scholar 

  17. S.N. Zhurkov, International Journal of Fracture, 1, (1965), p. 311.

    Google Scholar 

  18. D.R. Curran, D.A. Shockey, and L. Seaman, “Dynamic fracture criteria for a polycarbonate”, Journal of Applied Physics, 44, (1973), p. 4025.

    Article  Google Scholar 

  19. J.R. Rice, Y. Ben-Zion, and K.S. Kim, “Three-dimensional perturbation solution for a dynamic planar crack moving unsteadily in a model elastic solid”, Journal of the Mechanics and Physics of Solids, 42, (1994), p. 813.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ravi-Chandar, K., Yang, B. (1995). On the Role of Microcracking in the Dynamic Fracture of Polymethylmethacrylate. In: Batra, R.C. (eds) Contemporary Research in Engineering Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80001-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80001-6_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80003-0

  • Online ISBN: 978-3-642-80001-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics