Present-day Computing Environment

  • A. Messina
Conference paper

Abstract

In the recent years high performance computing resources have been made possible the development of Problem Solving Environment (PSE). PSE characteristics and components are presented briefly as well as an application developed for the study of the large scale structure of the universe.

Keywords

Dinates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Gallopoulos, E. Houstis and J. R. Rice, Problem-Solving Environments for Computational Science, IEEE Comp. Science & Eng., Vol. 1 (1994), pp. 11–23CrossRefGoogle Scholar
  2. [2]
    E. Gallopoulos, E. Houstis and J. R. Rice, Future Research Directions in Problem Solving Environment for Computational Science, Tech. Report 1259, Center for Supercomputing Research and Development, Univ. of Illinois at Urbana- Champaign, 1992.Google Scholar
  3. [3]
    J. R. Gilbert, C. Moler and R. Schreiber, Sparse Matrices in MATLAB: Design and Implementation, SIAM J. Matrix Anal. Appl., Vol. 13 (1992), pp. 333–356CrossRefMATHMathSciNetGoogle Scholar
  4. [4]
    A. Messina, Present-day Computing Environment: a Problem Solving Environment, Mem. Soc. Astron. It., Vol. 64 (1993), pp 893–907Google Scholar
  5. [5]
    A. Messina, M. Pensato and M. Borghesi, A Tool for Tracking and Steering in Distributed Environment, C.N.R. Technical Report on Project Sistemi Informatici e Calcolo Parallelo, n. 1 /147, March 1993Google Scholar
  6. [6]
    P. Londrillo, A. Messina and M. Stiavelli, Dissipationless Galaxy Formation Revisited, Mon. Not. R. Astr. Soc., Vol. 250 (1991), pp. 54–68Google Scholar
  7. [7]
    M. Stiavelli, P. Londrillo and A. Messina, Dissipationless Collapse and the Shape of Isophotes, Mon. Not. R. Astr. Soc., Vol. 251 (1991), pp. 57p–59 pGoogle Scholar
  8. [8]
    E. J. Farrell, IBM J. Res. Dev., Vol.35 (1991), prefaceGoogle Scholar
  9. [9]
    C. Upson, T. Jr. Faulhaber, D. Kamins, D. Laidlaw, D. Schlegel, J. Vroom, R. Gurwitz and A. van Dam, The Application Visualization System: a Computational Environment for Scientific Visualization, Comp. Graphics and Appl., Vol. 9 (1989), pp. 30–42CrossRefGoogle Scholar
  10. [10]
    D. Dyer, A Dataflow Toolkit for Visualization, Comp. Graphics and Appl., Vol. 10 (1990), pp. 60–69CrossRefGoogle Scholar
  11. [11]
    SGI: IRIS Explorer manuals, Silicon Graphics (1993)Google Scholar
  12. [12]
    P. Haeberli, ConMan: A Visual Programming Language for Interactive Graphics, Comp. Graphics, Vol. 22 (1988), pp. 103–111CrossRefGoogle Scholar
  13. [13]
    T. I. Boubez, A. M. Froncioni and R. L. Peskin, A Prototyping Environment for Differential Equations, ACM Trans. Math. Softw., Vol. 18 (1992), pp. 1–10CrossRefMATHGoogle Scholar
  14. [14]
    F. Szelenyi and V. Zecca, Visualizing Parallel Execution of FORTRAN Programs, IBM J. Res. Dev., Vol. 35 (1991), pp. 270–282Google Scholar
  15. [15]
    M. Brown and R. Sedgewick, A System for Algorithm Animation, Comp. Graphics, Vol. 18 (1984), pp. 177–186CrossRefGoogle Scholar
  16. [16]
    W. Hibbard, C. Dyer and B. Paul, A Development Environment for Data Analysis Algorithms, Preprints Conf. Interactive Information and Processing Systems for Meteorology, Oceanography and Hydrology, Atlanta, American Meteorology Society, pp. 101–107 (1992)Google Scholar
  17. [17]
    L. Moltedo, F. Ascani and A. Messina, Mudi3: a Tool for the Interactive Visual Analysis of Multidimensional Fields, NATO ASI Series, Vol. 106 (1993), pp. 203–215Google Scholar
  18. [18]
    M. M. Blattner, D. A. Sumikawa and R. M. Greenberg, Hum. Comp. Interac., Vol. 4 (1989), pp. 11–23CrossRefGoogle Scholar
  19. [19]
    S. Blankenberger and K. Hahn, Effects of Icon Design on Human-computer Interaction, Int. J. of Man-Machine Studies, Vol. 35 (1991), pp. 363–377CrossRefGoogle Scholar
  20. [20]
    J. R. Hayes and H. A. Simon, The Understanding Process: Problem Isomorphs, Cognitive Psyc., Vol. 8 (1976), pp. 165–190Google Scholar
  21. [21]
    A. Newell and H. A. Simon, Human Problem Solving, Prentice-Hall, NJ (1972)Google Scholar
  22. [22]
    B. S. Murray and E. McDaid, Visualizing and Representing Knowledge for the End User: a Review, Int. J. of Man-Machine Studies, Vol. 38 (1993), pp. 23–49CrossRefGoogle Scholar
  23. [23]
    G. L. Murphy and J. K. Wright, Changes in Conceptual Structure with Expertise: Differences Between Real-world Experts and Novices, J. of Exp. Psych.: Learning, Memory and Cognition, Vol. 10 (1984), pp. 144–155CrossRefGoogle Scholar
  24. [24]
    B. Adelson, Problem Solving and the Development of Abstract Categories in Programming Languages, Memory & Cognition, Vol. 9 (1981), pp. 422–433CrossRefGoogle Scholar
  25. [25]
    B. Adelson, When Novices Surpass Experts: the Difficulty of a Task may Increase with Expertise, J. of Exp. Psych.: Learning, Memory and Cognition, Vol. 10 (1984), pp. 480–495Google Scholar
  26. [26]
    A. Messina, L. Moltedo, S. Contento and R. Nicoletti, Cognitive Properties of Icons for Multidimensional Data Analysis, Proceedings of the 1995 Winter School of Computer Graphics and Visualization, Plzen, February, in pressGoogle Scholar
  27. [27]
    C. Bertoni, E. Carretti, F. Finelli, A. Messina and G. Venturi, Semiclassical Gravity and Large-Scale Structure, Phys. Rev. Lett., (1995), submittedGoogle Scholar
  28. [28]
    A. Messina, F. Lucchin, S. Matarrese and L. Moscardini, The Large-scale Structure of the Universe in Skewed Cold Dark Matter Models, Astroparticle J., Vol. 1 (1992), pp. 99–112CrossRefGoogle Scholar
  29. [29]
    E. Carretti, A. Messina and R. Ansaloni, Particle-Mesh code on Cray T3D, (1995), in preparationGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • A. Messina
    • 1
  1. 1.Dipartimento di FisicaBolognaItaly

Personalised recommendations