Skip to main content

From Shakedown Theory to Fatigue Fracture of Ductile Materials

  • Conference paper
Contemporary Research in Engineering Science
  • 263 Accesses

Abstract

This work deals with shakedown theorems of ductile materials and their application in fatigue fracture. Based on experimental observation, a fatigue crack is considered as a sharp notch with root radius being a material constant at threshold stress level. The reason for no crack propagation is assumed due to shakedown of the cracked body. Thus, a transition from shakedown to fatigue fracture is achieved. A simple, but reasonabl criterion for crack threshold has been worked out by using shakedown theorem. It is found that the fatigue threshold of a cracked body is proportional to the initial yield stress of the material multiplied by the square root of the effective crack tip radius. To verify the correctness of the analysis, about 50 sets of fatigue experimental data for ductile materials are collected from litereture, these data are then compared with the predicted results. Very good agreement between experiments and analyses has been achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Melan (1938) Der Spannungszustand eines Mises-Henckysehen Kontinuums bei veränderlicher Belastung. Sitzber. Akad. Wiss. Wien, IIa 147, 73–78.

    Google Scholar 

  2. E. Melan (1938) Zur Plastizität des räumlichen Kontinuums. Ing.-Arch. 8, 116–126.

    Article  Google Scholar 

  3. W. Prager (1956). Shakedown in elastic-plastic media subjected to cycles of load and temperature, Proc. Symp. Plasticita nella Scienza delle Costruzioni, Bologna, 239–244.

    Google Scholar 

  4. V. I. Eozenblum (1957) On shakedown of uneven heated elastic-plastic bodies (in Russian), Izw. Akad. Nauk SSSR. OTN, Mekh. Mash. 7, 136–138.

    Google Scholar 

  5. G. Ceradini (1969). Sull’ adattamento dei corpi elasto-plastici soggetti ad azioni dinamiche, Giorn. Genio Civile 106, No. 4 /5, 239–250.

    Google Scholar 

  6. J. A. König (1969). A shakedown theorem for temperature dependent elastic moduli, Bull. Acad. Polon. Sci. Ser. Sci. Tech. 17, 161–165.

    Google Scholar 

  7. G. Maier (1972). A shakedown matrix theory allowing for work hardening and second-order geometric effects, Proc. Symp. Foundations of Plasticity, Warsaw.

    Google Scholar 

  8. L. Corradi and G. Maier (1973). Inadaption theorems in the dynamics of elastic-workhardening structures, Ing.-Arch. 43, 44–57.

    Article  MATH  MathSciNet  Google Scholar 

  9. D. Wei chert (1986). On the influence of geometrical nonlinearities on the shakedown of elastic-plastic structures, Int. J. Plasticity 2, 135–148.

    Article  MATH  Google Scholar 

  10. B. G. Neal (1950). Plastic collapse and shakedown theorems for structures of strain-hardening material, J. Aero. Sci. 17, 297–306.

    MathSciNet  Google Scholar 

  11. G. Masing (1924). Zur Heyn’schen Theorie der Verfestigung der Metalle durch verborgen elastische Spannungen, Wissenschaftliche Veröffentlichungen aus dem Siemens-Konzern 3, 231–239.

    Google Scholar 

  12. E. Stein, G. Zhang and J. A. König (1990) Micromechanical modeling and computation of shakedown with nonlinear kinematic hardening including examples for 2-D problems. Axelrad, D.R. and Muschik, W. (ed.): Recent Developments in Micromechanics, Springer Verlag, Berlin.

    Google Scholar 

  13. E. Stein, G. Zhang and J. A. König (1992) Shakedown with nonlinear hardening including structural computation using finite element method. Int. J. Plasticity 8, 1–31.

    Article  MATH  Google Scholar 

  14. E. Stein and G. Zhang (1992) Theoretical and numerical shakedown analysis for kinematic hardening materials. Proc. 3rd Conf. on Computational Plasticity, Barcelona, 1–25.

    Google Scholar 

  15. E. Stein, G. Zhang and Y. Huang (1993) Modeling and computation of shakedown problems for nonlinear hardening materials. Computer Methods in Mechanics and Engineering 103 No. 1-2, 247–272.

    Article  MATH  MathSciNet  Google Scholar 

  16. E. Stein and Y. Huang (1994) An analytical method to solve shakedown problems with linear kinematic hardening materials. Int. J. of solids and structures 31, No. 18, 2433–2444.

    Article  MATH  Google Scholar 

  17. D. Taylor (1989) Fatigue Thresholds. Butterworths.

    Google Scholar 

  18. J. A. König (1987). Shakedown of elastic-plastic structures, PWN-Polish scientific publishers, Warsaw 1987.

    Google Scholar 

  19. J. Bree (1967). Elastic-plastic behaviour of thin tubes subjected to internal pressure and intermittent high-heat fluxes with application to fast- nuclear-reactor fuel elements, J. Strain Analysis 2. 226–238.

    Article  Google Scholar 

  20. J. Groß-Weege (1988). Zum Einspielverhalten von Flächentragwerken, Ph.D. thesis, Inst, für Mech., Ruhr-Universität Bochum.

    Google Scholar 

  21. H. Neuber (1958) Kerbspannungslehre. Springer Publisher, Heidelberg.

    MATH  Google Scholar 

  22. P. C. Paris and G. C. Sih (1965). Fracture toughness testing and its applications. ASTM STP 381, American Society for testing and materials, 30–83.

    Google Scholar 

  23. Y.J. Huang and E. Stein. Shakedown of a CT-Specimen. Experimental, Analytical and Numerical Investigations. Accepted for publication in Journal of Strain Analysis

    Google Scholar 

  24. Y.J. Huang, H. Xie and E. Stein (1995). Fractal Eifect of the Crack Propagation Path on Fatigue Behaviours. Submitted to Fatigue Fract. Engng Mater. Struct.

    Google Scholar 

  25. M. H. EL Haddad, T. H. Topper and K. N. Smith (1979) Prediction of non propagating cracks. Engineering fracture mechanics 11, 573–584.

    Article  Google Scholar 

  26. G. R. Yoder, L. A. Cooley and T. W. Crooker (1979) Quantitative analysis of microstructural effects on crack growth in widmanstten Ti-6A1-4V and Ti-8Al-lMo-lV. Engineering fracture mechanics 11, 805–816.

    Article  Google Scholar 

  27. D. N. Lai and V. Weiss (1978) A notch analysis of fracture approach to fatigue crack propagation. Metallurgical Transactions A 9A, 413 - 426.

    Article  Google Scholar 

  28. N. E. Frost (1960) Notch effects and the critical alternating stress required to propagate a crack in an aluminium alloy subject to fatigue loading Journal of mechanical engineering science 2 No. 2, 109–119.

    Google Scholar 

  29. A. R. Jack and A. T. Price (1970) The initiation of fatigue cracks from notches in mild steel plates International journal of fracture mechanics 6 No. 4, 401 - 409.

    Google Scholar 

  30. R. E. Swanson, A. W. Thompson and I. M. Bernstein (1986) Effect of notch root radius on stress intensity in mode I and Mode III loading Metallurgical Transactions A 17A, 1633–1637.

    Google Scholar 

  31. N. E. Dowling (1979) Fatigue at notches and the local strain and fracture mechanics approaches. Fracture mechanics, ASTM STP 677, ed. C. W. Schmith. 247–273.

    Google Scholar 

  32. P. Kuhn and H. F. Hardrath (1952) An engineering method for estimating notch-size effect in fatigue tests on steel. NAC A Technical note 2805.

    Google Scholar 

  33. R. O. Ritchie (1979) Near-threshold fatigue-crack propagation in steels. Int. Metals Reviews 5-6, 205–230.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, Y.J., Stein, E. (1995). From Shakedown Theory to Fatigue Fracture of Ductile Materials. In: Batra, R.C. (eds) Contemporary Research in Engineering Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80001-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80001-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80003-0

  • Online ISBN: 978-3-642-80001-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics