Skip to main content

Advances in Cluster Analysis Relevant to Marketing Research

  • Conference paper

Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Summary

We review the current methodological and practical state of cluster analysis in marketing. Topics covered include segmentation, market structure analysis, a taxonomy based on overlap, connections to conjoint analysis, and validation.

Keywords

  • Market Research
  • Consumer Research
  • Conjoint Analysis
  • Marketing Research
  • Market Segmentation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

For comments on an early draft of this paper, we are indebted to Rick Bagozzi, Doug Carroll, Geert De Soete, Wayne DeSarbo, Akinori Okada, and Dave Stewart. Much of this work appeared in Arabie, Hubert (1994).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-79999-0_1
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-79999-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ARABIE, P., CARROLL, J. D. (1980): MAPCLUS: A mathematical programming approach to fitting the ADCLUS model. Psychometrika, 45, 211–235.

    CrossRef  Google Scholar 

  • ARABIE, P., CARROLL, J. D., DESARBO, W., WIND, J. (1981): Overlapping clustering: A new method for product positioning. Journal of Marketing Research, 18, 310–317.

    CrossRef  Google Scholar 

  • ARABIE, P., HUBERT, L. (1992): Combinatorial data analysis. Annual Review of Psychology, 43, 169–203.

    CrossRef  Google Scholar 

  • ARABIE, P., HUBERT, L. (1994): Cluster analysis in marketing research. In R. P. Bagozzi (ed.): Advanced methods in marketing research, Oxford: Black-well, 160–189.

    Google Scholar 

  • ARABIE, P., SOLI, S. D. (1982): The interface between the types of regression and methods of collecting proximity data. In R. G. Golledge and J. N. Rayner (eds.): Proximity and preference: Problems in the multidimensional analysis of large data sets. University of Minnesota Press., Minneapolis MN, 90–115.

    Google Scholar 

  • ARABIE, P., WIND, J. (1994): Marketing and social networks. In J. Galask-iewicz and S. S. Wasserman (eds.): Advances in social and behavioral sciences from social network analysis. Sage, Newbury Park, CA.

    Google Scholar 

  • BAKER, F. B., HUBERT, L. J. (1976): A graph-theoretic approach to goodness-of-fit in complete-link hierarchical clustering. Journal of the American Statistical Association, 71, 870–878.

    CrossRef  Google Scholar 

  • BATAGELJ, V. (1988): Generalized Ward and related clustering problems. In H. H. Bock (ed.): Classification and related methods of data analysis. North-Holland, Amsterdam, 67–74.

    Google Scholar 

  • BEANE, T. P., ENNIS, D. M. (1987): Market segmentation: A review. European Journal of Marketing, 21, 20–42.

    CrossRef  Google Scholar 

  • BLOZAN, W., PRABHAKER, P. (1984): Notes on aggregation criteria in market segmentation. Journal of Marketing Research, 21, 332–335.

    CrossRef  Google Scholar 

  • BRETTON-CLARK, INC. (1993): ProClus. Bretton-Clark, Morristown, NJ.

    Google Scholar 

  • BUTLER, D. H. (1976): Development of statistical marketing models. In Speaking of Hendry. Hendry Corporation, Croton-on-Hudson, NY.

    Google Scholar 

  • CARROLL, J. D., CLARK, L. A., DESARBO, W. S. (1984): The representation of three-way proximities data by single and multiple tree structure models. Journal of Classification, 1, 25–74.

    CrossRef  Google Scholar 

  • CHANG, W.-C. (1983): On using principal components before separating a mixture of two multivariate normal distributions. Applied Statistics, 32, 267–275.

    CrossRef  Google Scholar 

  • CHOFFRAY, J.-M., LILIEN, G. L. (1978): A new approach to industrial market segmentation. Sloan Management Review, Spring, 17–29.

    Google Scholar 

  • CHOFFRAY, J.-M., LILIEN, G. L. (1980a): Market planning for new industrial products. Wiley, New York.

    Google Scholar 

  • CHOFFRAY, J.-M., LILIEN, G. L. (1980b): Industrial market segmentation by the structure of the purchasing process. Industrial Marketing Management, 9, 331–342.

    CrossRef  Google Scholar 

  • COOPER, M. C., and MILLIGAN, G. W. (1988): The effect of measurement error on determining the number of clusters in cluster analysis. In W. Gaul and M. Schader (Eds.): Data, expert knowledge and decisions. Springer-Verlag, Berlin 319–328.

    Google Scholar 

  • CURRIM, I. S. (1981): Using segmentation approaches for better prediction and understanding from consumer mode choice models.Journal of Marketing Research, 18, 301–309.

    CrossRef  Google Scholar 

  • CURRIM, I. S., SCHNEIDER, L. G. (1991): A taxonomy of consumer purchase strategies in a promotion intensive environment. Marketing Science, 10, 91–110.

    CrossRef  Google Scholar 

  • DAY, G. S., HEELER, R. M. (1971): Using cluster analysis to improve marketing experiments. Journal of Marketing Research, 8, 340–347.

    CrossRef  Google Scholar 

  • DAY, W. H. E. (ed.) (1991): Classification Literature Automated Search Service, 20.

    Google Scholar 

  • DE KLUYVER, C. A., WHITLARK, D. B. (1986): Benefit segmentation for industrial products. Industrial Marketing Management, 15, 273–286.

    CrossRef  Google Scholar 

  • DE SOETE, G. (1986): Optimal variable weighting for ultrametric and additive tree clustering. Quality and Quantity, 20, 169–180.

    CrossRef  Google Scholar 

  • DE SOETE, G. (1988): OVWTRE: A program for optimal variable weighting for ultrametric and additive tree fitting. Journal of Classification, 5, 101–104.

    CrossRef  Google Scholar 

  • DE SOETE, G. (1994): Variable selection and weighting in cluster analysis. In P. Arabie, L. Hubert and G. De Soete (eds.): Clustering and classification. World Scientific, River Edge, New Jersey.

    Google Scholar 

  • DE SOETE, G., CARROLL, J. D. (1988): Optimal weighting for one-mode and two-mode ultrametric tree representations of three-way three-mode data. In M. G. H. Jansen and W. H. van Schuur (eds.): The many faces of multivariate data analysis. RION, Groningen, 16–29.

    Google Scholar 

  • DE SOETE, G., CARROLL, J. D. (1989): Ultrametric tree representations of three-way three-mode data. In R. Coppi and S. Bolasco (eds.): Analysis of multiway data matrices. North-Holland, Amsterdam, 415–426.

    Google Scholar 

  • DE SOETE, G., CARROLL, J. D. (1994): K-means clustering in a low-dimensional Euclidean space. In E. Diday, Y. Lechevailier, M. Schader, P. Bertrand, P. Burtschy(eds.): New approaches in classification and data analysis, Springer-Verlag, Heidelberg.

    Google Scholar 

  • DE SOETE, G., CARROLL, J. D., DESARBO, W. S. (1987): Least squares algorithms for constructing constrained ultrametric and additive tree representations of symmetric proximity data. Journal of Classification, 4, 155–173.

    CrossRef  Google Scholar 

  • DE SOETE, G., DESARBO, W. S., CARROLL, J. D. (1985): Optimal variable weighting for hierarchical clustering: An alternating least-squares algorithm, Journal of Classification, 2, 173–192.

    CrossRef  Google Scholar 

  • DEMING, W. E., STEPHAN, F. F. (1940): On a least squares adjustment of a sampled frequency table when the expected marginal totals are known.Annals of Mathematical Statistics, 11, 427–444.

    CrossRef  Google Scholar 

  • DESARBO, W. S. (1982): GENNCLUS: New models for general nonhierarchical clustering analysis. Psychometrika, 47, 446–449.

    Google Scholar 

  • DESARBO, W. S., CARROLL, J. D., CLARK, L. A., GREEN, P. E. (1984): Synthesized clustering: A method for amalgamating alternative clustering bases with differential weighting of variables. Psychometrika, 49, 57–78.

    CrossRef  Google Scholar 

  • DESARBO, W. S., CRON, W. L. (1988): A conditional mixture maximum likelihood methodology for clusterwise linear regression. Journal of Classification, 5, 249–289.

    CrossRef  Google Scholar 

  • DESARBO, W. S., DE SOETE, G. (1984): On the use of hierarchical clustering for the analysis of nonsymmetric proximities. Journal of Consumer Research, 11, 601–610.

    CrossRef  Google Scholar 

  • DESARBO, W. S., JEDIDI, K., COOL, K., SCHENDEL, D. (1990): Simultaneous multidimensional unfolding and cluster analysis: An investigation of strategic groups.Marketing Letters, 2, 129–146.

    CrossRef  Google Scholar 

  • DESARBO, W. S., MAHAJAN, V. (1984): Constrained classification: The use of a priori information in cluster analysis. Psychometrika, 49, 187–216.

    CrossRef  Google Scholar 

  • DESARBO, W. S., MANRAI, A., BURKE, R. (1990): A nonspatial methodology incorporating the distance-density hypothesis. Psychometrika, 55, 229–253.

    CrossRef  Google Scholar 

  • DESARBO, W. S., MANRAI, A. K., MANRAI, L. A. (1993): Non-spatial tree models for the assessment of competitive market structure: an integrated review of the marketing and psychometric literature. In J. Eliashberg and G. Lilien (eds.): Handbook in operations research and management science: Marketing. Elsevier, New York, 193–257.

    Google Scholar 

  • DESARBO, W. S., OLIVER, R. L., RANGASWAMY, A. (1989): A simulated annealing methodology for clusterwise linear regression. Psychometrika, 4, 707–736.

    CrossRef  Google Scholar 

  • DICKINSON, J. R. (1990): The bibliography of marketing research methods (3rd ed.). Lexington, Lexington, MA.

    Google Scholar 

  • DILLON, W. R., MULANI, N., FREDERICK, D. G. (1989): On the use of component scores in the presence of group structure. Journal of Consumer Research, 16, 106–112.

    CrossRef  Google Scholar 

  • DOYLE, P., SAUNDERS, J. (1985): Market segmentation and positioning in specialized industrial markets. Journal of Marketing, 49, 24–32.

    CrossRef  Google Scholar 

  • DUBES, R., JAIN, A. K. (1979): Validity studies in clustering methodologies. Pattern Recognition, 11, 235–254.

    CrossRef  Google Scholar 

  • ELROD, T., WINER, R. S. (1982): An empirical evaluation of aggregation approaches for developing market segments. Journal of Marketing, 46 (Fall), 65–74.

    CrossRef  Google Scholar 

  • FIENBERG, S. E. (1970): An iterative procedure for estimation in contingency tables. Annals of Mathematical Statistics, 41, 907–17. (Erratum, p. 1778).

    Google Scholar 

  • FINDEN, C. R., GORDON, A. D. (1985): Obtaining common pruned trees. Journal of Classification, 2, 255–276.

    CrossRef  Google Scholar 

  • FOWLKES, E. B., GNANADESIKAN, R., KETTENRING, J. R. (1987):Variable selection in clustering and other contexts. In C. L. Mallows (ed.): Design, data, and analysis. Wiley, New York, 13–34.

    Google Scholar 

  • FOWLKES, E. B., GNANADESIKAN, R., KETTENRING, J. R. (1988): Variable selection in clustering. Journal of Classification, 5, 205–228.

    CrossRef  Google Scholar 

  • FURSE, D. H., PUNJ, G. N., STEWART, D. W. (1984): A typology of individual search strategies among purchasers of new automobiles. Journal of Consumer Research, 10, 417–431.

    CrossRef  Google Scholar 

  • GAUL, W., BAIER, D. (1993): MARKtforschung und MARKeting MANagement [Market research and marketing management]. R. Oldenbourg, München.

    Google Scholar 

  • GAUL, W., SCHADER, M. (1988a): Clusterwise aggregation of relations. Applied Stochastic Models and Data Analysis, 4, 273–282.

    CrossRef  Google Scholar 

  • GAUL, W., SCHADER, M. (eds.). (1988b): Data, expert knowledge and decisions. Springer-Verlag, Berlin.

    Google Scholar 

  • GLAZER, R., NAKAMOTO, K. (1991): Cognitive geometry: An analysis of structure underlying representations of similarity. Marketing Science, 10, 205–228.

    CrossRef  Google Scholar 

  • GNANADESIKAN, R., KETTENRING, J. R. (1972): Robust estimates, residuals, and outlier detection with multiresponse data. Biometrics, 28, 81–124.

    CrossRef  Google Scholar 

  • GORDON, A. D. (1980): Methods of constrained classification. In R. Tomassone (ed.): Analyse de Donnes et Informatique. INRIA, Le Chesnay, 161–171.

    Google Scholar 

  • GORDON, A. D. (1981): Classification. Chapman and Hall, London.

    Google Scholar 

  • GREEN, P. E., FRANK, R. E., ROBINSON, P. J. (1967): Cluster analysis in test market selection. Management Science, 13, B387-B400.

    CrossRef  Google Scholar 

  • GREEN, P. E., HELSEN, K. (1989): Cross-validation assessment of alternatives to individual-level conjoint analysis: A case study. Journal of Marketing Research, 26, 346–350.

    CrossRef  Google Scholar 

  • GREEN, P. E., KRIEGER, A. M. (1985): Buyer similarity measures in conjoint analysis: Some alternative proposals. Journal of Classification, 2, 41–61.

    CrossRef  Google Scholar 

  • GREEN, P. E., KRIEGER, A. M. (1991): Segmenting markets with conjoint analysis. Journal of Marketing, 55 (October), 20–31.

    CrossRef  Google Scholar 

  • GREEN, P. E., KRIEGER, A. M. (1993): An evaluation of alternative approaches to cluster-based market segmentation. Unpublished manuscript, Wharton School, University of Pennsylvania, Philadelphia.

    Google Scholar 

  • GREEN, P. E., KRIEGER, A. M., SCHAFFER C. M. (1985): Quick and simple benefit segmentation. Journal of Advertising Research, 25, 9–17.

    Google Scholar 

  • GREEN, P. E., SRINIVASAN, V. (1978): Conjoint analysis in consumer research: Issues and outlook. Journal of Consumer Research, 5, 103–123.

    CrossRef  Google Scholar 

  • GREEN, P. E., SRINIVASAN, V. (1990): Conjoint analysis in marketing: New developments with implications for research and practice. Journal of Marketing, 54 (October), 3–19.

    CrossRef  Google Scholar 

  • GROVER, R., SRINIVASAN, V. (1987): A simultaneous approach to market segmentation and market structuring. Journal of Marketing Research, 24, 139–153.

    CrossRef  Google Scholar 

  • GROVER, R., SRINIVASAN, V. (1992): Evaluating the multiple effects of retail promotions on brand loyal and brand switching segments.Journal of Marketing Research, 29, 76–89.

    CrossRef  Google Scholar 

  • HARTIGAN, J. A. (1975): Clustering algorithms. New York: Wiley.Translated into Japanese by H. Nishida, M. Ybshida, H. Hiramatsu, K. Tanaka, 1983. Micro Software, Tokyo.

    Google Scholar 

  • HELSEN, K., GREEN, P. E. (1991): A computational study of replicated clustering with an application to market segmentation. Decision Sciences, 22, 1124–1141.

    Google Scholar 

  • HUBERT, L. J., ARABIE, P. (1985): Comparing partitions. Journal of Classification, 2, 193–218.

    CrossRef  Google Scholar 

  • HUTCHINSON, J. W., MUNGAL, A. (1992): Pairwise partitioning: A nonmetric algorithm for identifying feature-based similarity measures. Manuscript submitted for publication.

    Google Scholar 

  • IACOBUCCI, D., HOPKINS, N. (1992): Modeling dyadic interactions and networks in marketing. Journal of Marketing Research, 29, 5–17.

    CrossRef  Google Scholar 

  • JOHNSON, M. D., FORNELL, C. (1987): The nature and methodological implications of the cognitive representation of products. Journal of Consumer Research, 14, 214–228.

    CrossRef  Google Scholar 

  • KAMAKURA, W. A. (1988): A least squares procedure for benefit segmentation with conjoint experiments. Journal of Marketing Research, 25, 157–167.

    CrossRef  Google Scholar 

  • KAMAKURA, W. A. (1992): A clusterwise multinomial logit model for multiple locally-independent choice sets. Unpublished manuscript, Owen Graduate School of Management, Vanderbilt University, Nashville.

    Google Scholar 

  • KAMAKURA, W. A., AGRAWAL, J. (1990): A clusterwise multinomial logit model for benefit segmentation. Unpublished manuscript, Owen Graduate School of Management, Vanderbilt University, Nashville.

    Google Scholar 

  • KAMAKURA, W. A., MAZZON, J. A. (1991): Value segmentation: A model for the measurement of values and value systems. Journal of Consumer Research, 18, 208–218.

    CrossRef  Google Scholar 

  • KLASTORIN, T. D. (1985): The p-median problem for cluster analysis: A comparative test using the mixture model approach.Management Science, 31, 84–95.

    CrossRef  Google Scholar 

  • LEGENDRE, P. (1987): Constrained clustering. In P. Legendre and L. Legendre (eds.): Developments in numerical ecology [NATO Advanced Study Institute Series G (Ecological Sciences)]. Springer-Verlag, Berlin, 289–307.

    Google Scholar 

  • LEGENDRE, L., LEGENDRE, P. (1993): Numerical ecology (2nd ed.). Elsevier, Amsterdam.

    Google Scholar 

  • LING, R. F. (1971): Cluster analysis. University Microfilms, Ann Arbor, MI. No. 71–22356.

    Google Scholar 

  • MACQUEEN, J. (1967): Some methods for classification and analysis of multivariate observations. In L. M. Le Cam and J. Neyman (eds.): Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, Berkeley, (Vol. 1, 281–297).

    Google Scholar 

  • MAHAJAN, V., JAIN, A. K. (1978): An approach to normative segmentation. Journal of Marketing Research, 15, 338–345.

    CrossRef  Google Scholar 

  • MILLIGAN, G. W. (1994): Clustering validation: Results and implications for applied analyses. In P. Arabie, L. Hubert and G. De Soete (eds.): Clustering and classification. World Scientific, River Edge, New Jersey.

    Google Scholar 

  • MILLIGAN, G. W., COOPER, M. C. (1985): An examination of procedures for determination of clusters in a data set. Psychometrika, 50, 159–179.

    CrossRef  Google Scholar 

  • MILLIGAN, G. W., COOPER, M. C. (1986): A study of the comparability of external criteria for hierarchical cluster analysis. Multivariate Behavioral Research, 21, 441–458.

    CrossRef  Google Scholar 

  • MILLIGAN, G. W., COOPER, M. C. (1988): A study of standardization of variables in cluster analysis. Journal of Classification, 5, 181–204.

    CrossRef  Google Scholar 

  • MOORE, W. L. (1980): Levels of aggregation in conjoint analysis: An empirical comparison. Journal of Marketing Research, 17, 516–523.

    CrossRef  Google Scholar 

  • MURPHY, R. A., TATHAM, R. L. (1979): Optimal construction of experimental clusters.Management Science, 25, 182–190.

    CrossRef  Google Scholar 

  • MURTAGH, F. (1985): A survey of algorithms for contiguity-constrained clustering and related problems. Computer Journal, 28, 82–88.

    CrossRef  Google Scholar 

  • NICOSIA, F. M., WIND, Y. (1977): Behavioral models of organizational buying processes. In F. M. Nicosia and Y. Wind (eds.): Behavioral models for market analysis: Foundations for marketing action. Dryden, Hinsdale IL, 96–120.

    Google Scholar 

  • OGAWA, K. (1987): An approach to simultaneous estimation and segmentation in conjoint analysis. Marketing Science, 6, 66–81.

    CrossRef  Google Scholar 

  • PRUZANSKY, S., TVERSKY, A., CARROLL, J. D. (1982): Spatial versus tree representations of proximity data. Psychometrika, 47, 3–24.

    CrossRef  Google Scholar 

  • PUNJ, G., STEWART, D. W. (1983): Cluster analysis in marketing research: Review and suggestions for application. Journal of Marketing Research, 20, 134–148.

    CrossRef  Google Scholar 

  • RAO, V. R., SABAVALA, D. J. (1981): Inference of hierarchical choice processes from panel data. Journal of Consumer Research, 8, 85–96.

    CrossRef  Google Scholar 

  • RAO, V. R., SABAVALA, D. J., LANGFELD, P. A. (1977): Alternative measures for partitioning analysis based on brand switching data. Unpublished manuscript, Johnson Graduate School of Cornell University, Ithaca NY.

    Google Scholar 

  • RAO, V. R., SABAVALA, D. J., ZAHORICK, A. J. (1982): Market structure analysis using brand switching data: A comparison of clustering techniques. In R. K. Srivastava and A. Shocker (eds.): Analytical approaches to product and marketing planning: The second conference. Marketing Science Institute, Cambridge MA, 17–25.

    Google Scholar 

  • ROBLES, F., SARATHY, R. (1986): Segmenting the commuter aircraft market with cluster analysis.Industrial Marketing Management, 15, 1–12.

    CrossRef  Google Scholar 

  • ROHLF, F. J. (1992): NTSYS-pc numerical taxonomy and multivariate analysis system (version 1.70). Exeter Software, Setauket, NY.

    Google Scholar 

  • SCHADER, M. (ed.) (1992): Analyzing and modeling data and knowledge. Springer-Verlag, Berlin.

    Google Scholar 

  • SCHADER, M., GAUL, W. (eds.) (1990): Knowledge, data and computer-assisted decisions. Springer-Verlag, Berlin.

    Google Scholar 

  • SHEPARD, R. N., ARABIE, P. (1979): Additive clustering: Representation of similarities as combinations of discrete overlapping properties. Psychological Review., 86, 87–123.

    CrossRef  Google Scholar 

  • SHOCKER, A. D., STEWART, D. W., ZAHORIK, A. J. (1990): Determining the competitive structure of product-markets: Practices, issues, and suggestions. Journal of Managerial Issues, 2, (2) 127–159.

    Google Scholar 

  • SLATER, P. (1984): Tree representations of internal migration flows and related topics. Community and Organization Research Institute, University of California, Santa Barbara.

    Google Scholar 

  • SOKAL, R. R., MICHENER, C. D. (1958): A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin, 38, 1409–1438.

    Google Scholar 

  • SRIVASTAVA, R. K. (1981): Usage-situational influences on perceptions of product-markets: Theoretical and empirical issues. In K. B. Monroe (ed.): Advances in Consumer Research, Vol. 8. Association for Consumer Research, Ann Arbor MI, 106–111.

    Google Scholar 

  • SRIVASTAVA, R. K., ALPERT, M. I. (1982): A customer-oriented approach for determining market structures. In R. K. Srivastava and A. D. Shocker (eds.) Proceedings of the Second Conference on Analytic Approaches to Product and Marketing Planning. Marketing Science Institute, Cambridge MA, 26–57.

    Google Scholar 

  • SRIVASTAVA, R. K., ALPERT, M. I., SHOCKER, A. D. (1984): A customer-oriented approach for determining market structures. Journal of Marketing, 48 (Spring), 32–45.

    CrossRef  Google Scholar 

  • STEENKAMP, J.-B. E. M., WEDEL, M. (1991): Segmenting retail markets on store image using a consumer-based methodology. Journal of Retailing, 67, 300–320.

    Google Scholar 

  • STEENKAMP, J.-B. E. M., WEDEL, M. (1993): Fuzzy clusterwise regression in benefit segmentation: Application and investigation into its validity.Journal of Business Research, 26, 237–249.

    CrossRef  Google Scholar 

  • STEWART, D. W. (1981): The application and misapplication of factor analysis in marketing research. Journal of Marketing Research, 18, 51–62.

    CrossRef  Google Scholar 

  • WARD, J. H., JR. (1963): Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236–244.

    CrossRef  Google Scholar 

  • WEDEL, M. (1993): Market segmentation research: A review of bases and methods with special emphasis on latent class models. In Information based decision making in marketing. European Society for Opinion and Marketing Research, Paris, 191–222.

    Google Scholar 

  • WEDEL, M., STEENKAMP, J.-B. E. M. (1991): A clusterwise regression method for simultaneous fuzzy market structuring and benefit segmentation. Journal of Marketing Research, 28, 385–396.

    CrossRef  Google Scholar 

  • WILKINSON, L. (1992): SYSTAT: The system for statistics. Systat, Inc., Evanston IL.

    Google Scholar 

  • WIND, Y. (1978a): Introduction to special section on market segmentation research. Journal of Marketing Research, 15, 315–316.

    CrossRef  Google Scholar 

  • WIND, Y. (1978b): Issues and advances in segmentation research. Journal of Marketing Research, 15, 317–337.

    CrossRef  Google Scholar 

  • WIND, Y. J. (1982): Product policy: Concepts, methods, and strategy. Addison-Wesley, Reading MA.

    Google Scholar 

  • WIND, Y., ROBERTSON, T. S. (1982): The linking pin role in organizational buying centers. Journal of Business Research, 10, 169–184

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1996 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Arabie, P., Hubert, L. (1996). Advances in Cluster Analysis Relevant to Marketing Research. In: Gaul, W., Pfeifer, D. (eds) From Data to Knowledge. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79999-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79999-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60354-2

  • Online ISBN: 978-3-642-79999-0

  • eBook Packages: Springer Book Archive