Advertisement

Dedicated Systems for Surface Electropotential Evaluation in the Detection and Diagnosis of Neoplasia

  • Mark L. Faupel
  • Yu-Sheng Hsu
Part of the ESO Monographs book series (ESO MONOGRAPHS)

Abstract

The key to effective measurement and analysis of direct current (dc) skin potentials is absolute maintenance of signal integrity from the skin surface to the signal processing components of the computer’s central processor [1]. This is critical because of the inherent low amplitude of biological dc potentials. At any point in the electronic path from skin sensor to device, potential exists for noise to intrude upon signal, thereby degrading diagnostically useful information. The central themes of this chapter are the design considerations of system components necessary for keeping noise to a minimum, and methods used to extract the critical diagnostic features from the resultant dc potentials.

Keywords

Decision Matrix Multivariate Adaptive Regression Spline Sensor Element Skin Sensor Johnson Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Geddes LA and Aronson S: Electrode potential stability. IEEE Transactions on Biomedical Engineering 1985 (32):987–989PubMedCrossRefGoogle Scholar
  2. 2.
    Lykken DT: Properties of electrodes used in electrodermal measurement. J Comp Physiol Psych 1959 (52):629–634CrossRefGoogle Scholar
  3. 3.
    O’Connell DN, Tursky B, Orne MT: Electrodes for recording skin potential. Arch Gen Psychiat 1960 (3):252–258PubMedGoogle Scholar
  4. 4.
    Goldstein AG, Sloboda W, Jennings JB: Spontaneous electrical activity of three types of silver EEG electrodes. Psychophysiol Newsletter 1962 (8): 10–16Google Scholar
  5. 5.
    Cooper R: Storage of silver chloride electrodes. EEG Clin Neurophysiol 1956 (8):692–696CrossRefGoogle Scholar
  6. 6.
    Roman JA and Lamb LE: Electrocardiography in flight. Aero Med 1962 (33):527–544Google Scholar
  7. 7.
    Parsons R: Electrode double layer. In: CA Hampel (ed) The Encyclopedia of Electrochemistry. Reinhold Publishing Co, New York 1964Google Scholar
  8. 8.
    Cooper R: Electrodes. Amer J EEG Tech 1963 (3): 91–101Google Scholar
  9. 9.
    MacFarlane PW and Veitch Lawrie TD: Comprehensive Electrocardiology Vol 1. Pergamon Press, Oxford 1972Google Scholar
  10. 10.
    Atkins AR: Measuring heart rate of an active athlete. Electron Eng 1961 (33):457–468Google Scholar
  11. 11.
    Kahn A: Motion artifacts and streaming potentials in relation to biological electrodes. Digest 6th Int Conf Med Electr Biol Eng 1965 (6):562–563Google Scholar
  12. 12.
    Johnson JB: Thermal agitation of electricity in conductors. Phys Rev 1928 (32):97–109CrossRefGoogle Scholar
  13. 13.
    Geddes LA and Baker LE: Chlorided silver electrodes. Med Res Eng 1967 (6):33–34PubMedGoogle Scholar
  14. 14.
    Lucchina GG and Phipps CG: A vectorcardiographic lead system and physiologic electrode configuration for dynamic readout. Aero Med 1962 (33):722–729Google Scholar
  15. 15.
    Lucchina GG and Phipps CG: An improved electrode for physiological recording. Aero Med 1963 (34):230–231Google Scholar
  16. 16.
    Geddes LA, Baker LE, McGoodwin B: The relationship between electrode area and amplifier impedance in recording muscle action potentials. Med Biol Eng 1967 (5):561–568CrossRefGoogle Scholar
  17. 17.
    Geddes LA and Baker LE: The relationship between input impedance and electrode area in recording the ECG. Med Electr Biol Eng 1966 (4):439–450CrossRefGoogle Scholar
  18. 18.
    Breiman L, Friedman JH, Olshen R, Stone CJ: Classification and Regression Trees. Wadsworth, Belmont CA 1984Google Scholar
  19. 19.
    Breiman L: The method of estimating multivariate functions from noisy data. Technomet 1991 (33): 125–160CrossRefGoogle Scholar
  20. 20.
    Friedman JH: Multivariate adaptive regression splines. Ann Stat 1991 (19):1–14CrossRefGoogle Scholar
  21. 21.
    Chaudhuri P, Huang M, Loh W, Yao R: Piecewise polynomial regression trees. Statist Sinica 1994 (4): 143–167Google Scholar
  22. 22.
    Efron B and Tibshirani R: Statistical data analysis in the computer age. Science 1991 (253):390–395PubMedCrossRefGoogle Scholar
  23. 23.
    Efron B: Bootstrap methods: Another look at the jackknife. Ann Stat 1979 (7):1–26CrossRefGoogle Scholar
  24. 24.
    Schlain BR, Lavin PT, Hayden CL: Using an auto-regressive model to detect departures from steady states in unequally spaced tumour marker data. Stat in Med 1992 (11):515–532CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Mark L. Faupel
    • 1
  • Yu-Sheng Hsu
    • 2
  1. 1.Boyd Graduate Studies, Research CenterThe University of GeorgiaAthensUSA
  2. 2.Department of Math and Computer ScienceGeorgia State UniversityAtlantaUSA

Personalised recommendations