Advertisement

Evaluation of Dynamical Spectra for T = 0 Quantum Monte-Carlo Simulations: Hubbard Lattices and Continuous Systems

  • J. J. Deisz
  • W. von der Linden
  • R. Preuss
  • W. Hanke
Conference paper
  • 90 Downloads
Part of the Springer Proceedings in Physics book series (SPPHY, volume 80)

Abstract

Zero-temperature dynamical spectra for Hubbard lattices and simple atoms are obtained using ground state projection quantum Monte Carlo and the maximum entropy method. Once zero-temperature imaginary-time correlations are identified and calculated, maximum entropy deconvolutions produce results of similar quality as those obtained from finite temperature quantum Monte Carlo for which this method has been frequently employed.

Keywords

Maximum Entropy Method Default Model Quantum Monte Carlo Diffusion Monte Carlo Anderson Impurity Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.N. Silver, D.S. Sivia, and J.E. Gubernatis, Phys. Rev. B 41, 2380 (1990); and in Quantum Simulations of Condensed Matter Phenomena, edited by J.E. Gubernatis and J.D. Doll, ( World Scientific, Singapore, 1990 ), p. 340.Google Scholar
  2. [2]
    J.E. Gubernatis, M. Jarrell, R.N. Silver, and D.S. Sivia, Phys. Rev. B 44, 6011 (1991).Google Scholar
  3. [3]
    J.W. Negele and H. Orland, Quantum Many-Particle Systems, (Addison- Wesley, Redwood City, 1988), ch. 8.Google Scholar
  4. [4]
    J. Skilling, in Maximum Entropy and Bayesian Methods, ed. J. Skilling (Kluwer Academic Publishers, Dordrecht, 1989), p. 45; in Maximum Entropy and Bayesian Methods, ed. P.F. Fougere ( Kluwer Academic Publishers, Dordrecht, 1990 ), p. 341.Google Scholar
  5. [5]
    S.F. Gull, in Maximum Entropy and Bayesian Methods, ed. J. Skilling ( Kluwer Academic Publishers, Dordrecht, 1989 ), p. 53.Google Scholar
  6. [6]
    S.R. White, Phys. Rev. B 44, 4670 (1991).Google Scholar
  7. [7]
    R.N. Silver, D.S. Sivia, J.E. Gubernatis, and M. Jarrell, Phys. Rev. Lett. 65, 496 (1990).ADSCrossRefGoogle Scholar
  8. [8]
    J. Deisz, M. Jarrell, and D.L. Cox, Phys. Rev. B 42, 4869 (1990).ADSCrossRefGoogle Scholar
  9. [9]
    For a review of quantum Monte Carlo applications of the maximum entropy method, see M. Jarrell and J.E. Gubernatis, preprint (1995).Google Scholar
  10. [10]
    R. Preuss, A. Muramatsu, W. von der Linden, P. Dietrich, F.F. Assaad, and W. Hanke, Phys. Rev. Lett 73, 732 (1994).ADSCrossRefGoogle Scholar
  11. [11]
    J. Deisz, M. Jarrell, and D.L. Cox, Phys. Rev. B 48, 10227 (1993).ADSCrossRefGoogle Scholar
  12. [12]
    M. Macivic and M. Jarrell, Phys. Rev. Lett 68, 1770 (1992).ADSCrossRefGoogle Scholar
  13. [13]
    W. von der Linden, Phys. Rep. 220, 53 (1992).ADSCrossRefGoogle Scholar
  14. [14]
    M. Caffarel, M. Reraf, and C. Pouchan, Phys. Rev. A 47, 3704 (1993).ADSCrossRefGoogle Scholar
  15. [15]
    S. Sorella, E. Tosatti, S. Baroni, R. Car, and M. Parinello. Adriatico Research Conf. Towards the Theoretical Understanding of the High-Tc Su-perconductors, eds. S. Lundqvist, E. Tosatti, M. Tosi, and L. Yu ( World Scientific, Singapore, 1988 ).Google Scholar
  16. [16]
    S. Sorella, S. Baroni, R. Car, and M. Parinello, Europhys. Lett. 8, 663 (1989).ADSCrossRefGoogle Scholar
  17. [17]
    W. von der Linden, I. Morgenstern, and H. De Raedt, Phys. Rev. B 41, 4669 (1990).ADSCrossRefGoogle Scholar
  18. [18]
    J.E. Hirsch, Phys. Rev. B 28, 4059 (1983); Phys. Rev. Lett. 51, 1900 (1983); Phys. Rev. B 31, 4403 (1985).Google Scholar
  19. [19]
    D.M. Ceperly and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980).ADSCrossRefGoogle Scholar
  20. [20]
    B.J. Alder, D.M. Ceperly, and P.J. Reynolds, J. Phys. Chem. 86, 1200 (1982).CrossRefGoogle Scholar
  21. [21]
    P.J. Reynolds, D.M. Ceperly, B.J. Alder, and W.A. Lester, Jr., J. Chem. Phys. 77, 5593 (1982).ADSCrossRefGoogle Scholar
  22. [22]
    X.-P. Li, D.M. Ceperly, and R.M. Martin, Phys. Rev. B 44, 10929 (1991).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • J. J. Deisz
    • 1
  • W. von der Linden
    • 2
  • R. Preuss
    • 3
  • W. Hanke
    • 3
  1. 1.Department of PhysicsGeorgetown UniversityUSA
  2. 2.Max-Planck-Institut für PlasmaphysikEURATOM AssociationGarching b. MünchenGermany
  3. 3.Institut für Theoretische PhysikUniversität WürzburgWürzburgGermany

Personalised recommendations