Skip to main content

Applications of Finite-Size-Scaling Techniques to the Simulation of Critical Fluids

  • Conference paper
Computer Simulation Studies in Condensed-Matter Physics VIII

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 80))

Abstract

A finite-size scaling theory is described that takes account of the lack of symmetry between the coexisting phases of fluids. This broken symmetry is manifest in the so-called ‘field mixing’ phenomenon which is a central feature of the non-universal critical behaviour of fluids. It is shown that the presence of field mixing leads to an alteration to the limiting form of the critical energy distribution and to a finite-size correction to the critical order parameter (particle density) distribution. As a result, finite-size shifts occur in the critical particle and energy densities. The theoretical predictions are tested with an extensive Monte-Carlo study of the critical density and energy fluctuations of the 3D Lennard-Jones fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a review, see V. Privman (ed.) Finite size scaling and numerical simulation of statistical systems ( World Scientific, Singapore ) (1990).

    Google Scholar 

  2. For a review see K. Binder in Computational Methods in Field Theory H. Gausterer, C.B. Lang (eds.) (Springer-Verlag Berlin-Heidelberg) 59–125 (1992).

    Google Scholar 

  3. K. Binder, Z. Phys. B43, 119 (1981).

    Article  Google Scholar 

  4. A.M. Ferrenberg and D.P. Landau, Phys. Rev. B44, 5081 (1991).

    Article  ADS  Google Scholar 

  5. D. Nicolaides and A.D. Bruce, J. Phys. A 21, 233 (1988).

    Article  ADS  Google Scholar 

  6. A.P. Gottlob and M. Hasenbusch, Physica A201, 593 (1993).

    Article  Google Scholar 

  7. P. Peczak, A.M. Ferrenberg and D.P. Landau, Phys. Rev. B43, 6087 (1991).

    Article  ADS  Google Scholar 

  8. K. Chen, A.M. Ferrenberg and D.P. Landau, Phys. Rev. B48, 3249 (1993).

    Article  ADS  Google Scholar 

  9. M. Rovere, D.W. Heermann and K. Binder, J. Phys.: Condens. Matter 2, 7009 (1990).

    Article  ADS  Google Scholar 

  10. M. Rovere, P. Nielaba and K. Binder, Z. Phys. B90, 215 (1993).

    Article  Google Scholar 

  11. A.D. Bruce and N.B. Wilding, Phys. Rev. Lett. 68, 193 (1992).

    Article  ADS  Google Scholar 

  12. N.B. Wilding and A.D. Bruce, J. Phys.: Condens. Matter 4, 3087 (1992).

    Article  ADS  Google Scholar 

  13. N.B. Wilding, Z. Phys. B93, 119 (1993).

    Article  Google Scholar 

  14. M. Müller and N.B. Wilding, Phys. Rev. E (in press).

    Google Scholar 

  15. J.V. Sengers and J.M.H. Levelt Sengers, Ann. Rev. Phys. Chem. 37, 189 (1986).

    Article  ADS  Google Scholar 

  16. F.J. Wegner, Phys. Rev. B5, 4529 (1972).

    Article  ADS  Google Scholar 

  17. A.D. Bruce, J. Phys. C 14, 3667 (1981).

    Article  ADS  Google Scholar 

  18. J.J. Rehr and N.D. Mermin, Phys. Rev. A 8, 472 (1973).

    Article  ADS  Google Scholar 

  19. For an analytic calculation of this function see R. Hilfer and N.B. Wilding, Mainz preprint.

    Google Scholar 

  20. The universal function representing the difference between the finite-size form of PL(P) and its limiting form M(x) has been previously studied in references [12, 13], where it was termed the field mixing correction.

    Google Scholar 

  21. N.B. Wilding and M. Müller, J. Chem. Phys. (in press).

    Google Scholar 

  22. For a fuller report of this work see N.B. Wilding, Mainz preprint.

    Google Scholar 

  23. D.J. Adams, Mol. Phys. 29, 307 (1975).

    Article  ADS  Google Scholar 

  24. M.P. Allen and D.J. Tildesley Computer simulation of liquids (Oxford University Press,Oxford) (1987).

    Google Scholar 

  25. B. Smit, J. Chem. Phys. 96 8639 (1992); B. Smit and D. Frenkel, J. Chem. Phys. 96 5663 (1991).

    Google Scholar 

  26. A.Z. Panagiotopoulos, preprint.

    Google Scholar 

  27. A.M. Ferrenberg and R.H. Swendsen, Phys. Rev. Lett. 61 2635 (1988); A.M. Ferren- berg and R.H. Swendsen Phys. Rev. Lett. 63, 1195 (1989). R.H. Swendsen, Physica A194, 53 (1993).

    Google Scholar 

  28. B.G. Nickel and J.J. Rehr, J. Stat. Phys. 61, 1 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  29. J.I. Siepmann, Mol. Phys. 70, 1145 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wilding, N.B. (1995). Applications of Finite-Size-Scaling Techniques to the Simulation of Critical Fluids. In: Landau, D.P., Mon, K.K., Schüttler, HB. (eds) Computer Simulation Studies in Condensed-Matter Physics VIII. Springer Proceedings in Physics, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79991-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79991-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79993-8

  • Online ISBN: 978-3-642-79991-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics