Advertisement

Applications of Finite-Size-Scaling Techniques to the Simulation of Critical Fluids

  • N. B. Wilding
Part of the Springer Proceedings in Physics book series (SPPHY, volume 80)

Abstract

A finite-size scaling theory is described that takes account of the lack of symmetry between the coexisting phases of fluids. This broken symmetry is manifest in the so-called ‘field mixing’ phenomenon which is a central feature of the non-universal critical behaviour of fluids. It is shown that the presence of field mixing leads to an alteration to the limiting form of the critical energy distribution and to a finite-size correction to the critical order parameter (particle density) distribution. As a result, finite-size shifts occur in the critical particle and energy densities. The theoretical predictions are tested with an extensive Monte-Carlo study of the critical density and energy fluctuations of the 3D Lennard-Jones fluid.

Keywords

Ising Model System Size Coexistence Curve Operator Distribution Critical Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    For a review, see V. Privman (ed.) Finite size scaling and numerical simulation of statistical systems ( World Scientific, Singapore ) (1990).Google Scholar
  2. [2]
    For a review see K. Binder in Computational Methods in Field Theory H. Gausterer, C.B. Lang (eds.) (Springer-Verlag Berlin-Heidelberg) 59–125 (1992).Google Scholar
  3. [3]
    K. Binder, Z. Phys. B43, 119 (1981).CrossRefGoogle Scholar
  4. [4]
    A.M. Ferrenberg and D.P. Landau, Phys. Rev. B44, 5081 (1991).ADSCrossRefGoogle Scholar
  5. [5]
    D. Nicolaides and A.D. Bruce, J. Phys. A 21, 233 (1988).ADSCrossRefGoogle Scholar
  6. [6]
    A.P. Gottlob and M. Hasenbusch, Physica A201, 593 (1993).CrossRefGoogle Scholar
  7. [7]
    P. Peczak, A.M. Ferrenberg and D.P. Landau, Phys. Rev. B43, 6087 (1991).ADSCrossRefGoogle Scholar
  8. [8]
    K. Chen, A.M. Ferrenberg and D.P. Landau, Phys. Rev. B48, 3249 (1993).ADSCrossRefGoogle Scholar
  9. [9]
    M. Rovere, D.W. Heermann and K. Binder, J. Phys.: Condens. Matter 2, 7009 (1990).ADSCrossRefGoogle Scholar
  10. [10]
    M. Rovere, P. Nielaba and K. Binder, Z. Phys. B90, 215 (1993).CrossRefGoogle Scholar
  11. [11]
    A.D. Bruce and N.B. Wilding, Phys. Rev. Lett. 68, 193 (1992).ADSCrossRefGoogle Scholar
  12. [12]
    N.B. Wilding and A.D. Bruce, J. Phys.: Condens. Matter 4, 3087 (1992).ADSCrossRefGoogle Scholar
  13. [13]
    N.B. Wilding, Z. Phys. B93, 119 (1993).CrossRefGoogle Scholar
  14. [14]
    M. Müller and N.B. Wilding, Phys. Rev. E (in press).Google Scholar
  15. [15]
    J.V. Sengers and J.M.H. Levelt Sengers, Ann. Rev. Phys. Chem. 37, 189 (1986).ADSCrossRefGoogle Scholar
  16. [16]
    F.J. Wegner, Phys. Rev. B5, 4529 (1972).ADSCrossRefGoogle Scholar
  17. [17]
    A.D. Bruce, J. Phys. C 14, 3667 (1981).ADSCrossRefGoogle Scholar
  18. [18]
    J.J. Rehr and N.D. Mermin, Phys. Rev. A 8, 472 (1973).ADSCrossRefGoogle Scholar
  19. [19]
    For an analytic calculation of this function see R. Hilfer and N.B. Wilding, Mainz preprint.Google Scholar
  20. [20]
    The universal function representing the difference between the finite-size form of PL(P) and its limiting form M(x) has been previously studied in references [12, 13], where it was termed the field mixing correction.Google Scholar
  21. [21]
    N.B. Wilding and M. Müller, J. Chem. Phys. (in press).Google Scholar
  22. [22]
    For a fuller report of this work see N.B. Wilding, Mainz preprint.Google Scholar
  23. [23]
    D.J. Adams, Mol. Phys. 29, 307 (1975).ADSCrossRefGoogle Scholar
  24. [24]
    M.P. Allen and D.J. Tildesley Computer simulation of liquids (Oxford University Press,Oxford) (1987).Google Scholar
  25. [25]
    B. Smit, J. Chem. Phys. 96 8639 (1992); B. Smit and D. Frenkel, J. Chem. Phys. 96 5663 (1991).Google Scholar
  26. [26]
    A.Z. Panagiotopoulos, preprint.Google Scholar
  27. [27]
    A.M. Ferrenberg and R.H. Swendsen, Phys. Rev. Lett. 61 2635 (1988); A.M. Ferren- berg and R.H. Swendsen Phys. Rev. Lett. 63, 1195 (1989). R.H. Swendsen, Physica A194, 53 (1993).Google Scholar
  28. [28]
    B.G. Nickel and J.J. Rehr, J. Stat. Phys. 61, 1 (1990).MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    J.I. Siepmann, Mol. Phys. 70, 1145 (1990).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • N. B. Wilding
    • 1
  1. 1.Institut für PhysikUniversität MainzMainzGermany

Personalised recommendations