Applications of Finite-Size-Scaling Techniques to the Simulation of Critical Fluids

  • N. B. Wilding
Part of the Springer Proceedings in Physics book series (SPPHY, volume 80)


A finite-size scaling theory is described that takes account of the lack of symmetry between the coexisting phases of fluids. This broken symmetry is manifest in the so-called ‘field mixing’ phenomenon which is a central feature of the non-universal critical behaviour of fluids. It is shown that the presence of field mixing leads to an alteration to the limiting form of the critical energy distribution and to a finite-size correction to the critical order parameter (particle density) distribution. As a result, finite-size shifts occur in the critical particle and energy densities. The theoretical predictions are tested with an extensive Monte-Carlo study of the critical density and energy fluctuations of the 3D Lennard-Jones fluid.


Ising Model System Size Coexistence Curve Operator Distribution Critical Fluid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    For a review, see V. Privman (ed.) Finite size scaling and numerical simulation of statistical systems ( World Scientific, Singapore ) (1990).Google Scholar
  2. [2]
    For a review see K. Binder in Computational Methods in Field Theory H. Gausterer, C.B. Lang (eds.) (Springer-Verlag Berlin-Heidelberg) 59–125 (1992).Google Scholar
  3. [3]
    K. Binder, Z. Phys. B43, 119 (1981).CrossRefGoogle Scholar
  4. [4]
    A.M. Ferrenberg and D.P. Landau, Phys. Rev. B44, 5081 (1991).ADSCrossRefGoogle Scholar
  5. [5]
    D. Nicolaides and A.D. Bruce, J. Phys. A 21, 233 (1988).ADSCrossRefGoogle Scholar
  6. [6]
    A.P. Gottlob and M. Hasenbusch, Physica A201, 593 (1993).CrossRefGoogle Scholar
  7. [7]
    P. Peczak, A.M. Ferrenberg and D.P. Landau, Phys. Rev. B43, 6087 (1991).ADSCrossRefGoogle Scholar
  8. [8]
    K. Chen, A.M. Ferrenberg and D.P. Landau, Phys. Rev. B48, 3249 (1993).ADSCrossRefGoogle Scholar
  9. [9]
    M. Rovere, D.W. Heermann and K. Binder, J. Phys.: Condens. Matter 2, 7009 (1990).ADSCrossRefGoogle Scholar
  10. [10]
    M. Rovere, P. Nielaba and K. Binder, Z. Phys. B90, 215 (1993).CrossRefGoogle Scholar
  11. [11]
    A.D. Bruce and N.B. Wilding, Phys. Rev. Lett. 68, 193 (1992).ADSCrossRefGoogle Scholar
  12. [12]
    N.B. Wilding and A.D. Bruce, J. Phys.: Condens. Matter 4, 3087 (1992).ADSCrossRefGoogle Scholar
  13. [13]
    N.B. Wilding, Z. Phys. B93, 119 (1993).CrossRefGoogle Scholar
  14. [14]
    M. Müller and N.B. Wilding, Phys. Rev. E (in press).Google Scholar
  15. [15]
    J.V. Sengers and J.M.H. Levelt Sengers, Ann. Rev. Phys. Chem. 37, 189 (1986).ADSCrossRefGoogle Scholar
  16. [16]
    F.J. Wegner, Phys. Rev. B5, 4529 (1972).ADSCrossRefGoogle Scholar
  17. [17]
    A.D. Bruce, J. Phys. C 14, 3667 (1981).ADSCrossRefGoogle Scholar
  18. [18]
    J.J. Rehr and N.D. Mermin, Phys. Rev. A 8, 472 (1973).ADSCrossRefGoogle Scholar
  19. [19]
    For an analytic calculation of this function see R. Hilfer and N.B. Wilding, Mainz preprint.Google Scholar
  20. [20]
    The universal function representing the difference between the finite-size form of PL(P) and its limiting form M(x) has been previously studied in references [12, 13], where it was termed the field mixing correction.Google Scholar
  21. [21]
    N.B. Wilding and M. Müller, J. Chem. Phys. (in press).Google Scholar
  22. [22]
    For a fuller report of this work see N.B. Wilding, Mainz preprint.Google Scholar
  23. [23]
    D.J. Adams, Mol. Phys. 29, 307 (1975).ADSCrossRefGoogle Scholar
  24. [24]
    M.P. Allen and D.J. Tildesley Computer simulation of liquids (Oxford University Press,Oxford) (1987).Google Scholar
  25. [25]
    B. Smit, J. Chem. Phys. 96 8639 (1992); B. Smit and D. Frenkel, J. Chem. Phys. 96 5663 (1991).Google Scholar
  26. [26]
    A.Z. Panagiotopoulos, preprint.Google Scholar
  27. [27]
    A.M. Ferrenberg and R.H. Swendsen, Phys. Rev. Lett. 61 2635 (1988); A.M. Ferren- berg and R.H. Swendsen Phys. Rev. Lett. 63, 1195 (1989). R.H. Swendsen, Physica A194, 53 (1993).Google Scholar
  28. [28]
    B.G. Nickel and J.J. Rehr, J. Stat. Phys. 61, 1 (1990).MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    J.I. Siepmann, Mol. Phys. 70, 1145 (1990).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • N. B. Wilding
    • 1
  1. 1.Institut für PhysikUniversität MainzMainzGermany

Personalised recommendations