Advertisement

Problems and Advances in the Dosimetry of Radionuclide Targeted Therapy

  • J. L. Humm
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 141)

Abstract

One of the goals of conventional external beam radiotherapy is to construct treatment plans for which the dose distribution across the tumor is uniform. This can be achieved with tumor dose heterogeneities of less than 15%. Therefore the concepts of dose response and tumor control probability (TCP) in external beam therapy are clearly defined and unambiguous. However, the treatment of many disease sites in radiation therapy result in high doses to partial volumes of normal tissue structures. For example, in the treatment of pancreatic cancer, the location of the pancreas results in the unavoidable delivery of high doses to the kidneys and spinal cord. The radiation tolerance of the spinal cord is well known. It behaves according to a serial model of radiation damage, which means that a dose in excess of 50 Gy to any region of the spinal cord can produce transverse radiation myelitis. However, the response of kidney is according to a parallel model, i.e., the kidney consists of a large number of repeat units, nephrons, a certain fraction of which must be destroyed before loss of kidney function is observed. The objective of a treatment plan for pancreatic cancer is to manipulate the beam directions and weights, so as to minimize the volume of kidney receiving high dose irradiation in order to reduce the risk of kidney complication, consistent with the prescribed dose to the target volume, and a dose of 003C;45 Gy anywhere to the spinal cord.

Keywords

Single Photon Emission Compute Tomography Linear Energy Transfer Normal Tissue Complication Probability Tumor Control Probability Phosphor Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akabani G, Poston JW, Bolch WE (1991) Estimates of beta absorbed fractions in small tissue volumes for selected radionuclides. J Nucl Med 32: 835–839PubMedGoogle Scholar
  2. Atcher RW, Friedman AM, Hines JJ (1988) An improved generator for the production of 212Pb and 212Bi from 224Ra. Int J Appl Radiat Isot 39: 283–286CrossRefGoogle Scholar
  3. Bardiès M, Lamé J, Myers MJ, Simeon JP (1990) A simplified approach to beta dosimetry for small spheres labelled on the surface. Phys Med Biol 35: 1039–1050PubMedCrossRefGoogle Scholar
  4. Begent RHJ, Bagshawe KD, Pedley RB, Searle F, Ledermann JA, Green AJ, Keep PA, Chester KA, Glaser MG, Dale RG (1989) Use of second antibody in radioimmunotherapy. Monogr Natl Cancer Inst 3: 59–61Google Scholar
  5. Berger MJ (1970) Beta-ray dosimetry calculations with the use of point kernels. In: Cloutier RJ, Edwards CL, Synder WS (eds) Medical radionuclides: radiation dose and effects. US Atomic Energy Commission, pp 63–86 (AEC Symposium Series)Google Scholar
  6. Bigler RE, Zanzonico PB, Cosma M, Sgouros G (1988) Adjuvant radioimmunotherapy for micrometastases: a stategy for cancer cure. In: Srivastava SC (ed) Radiolabeled antibodies for imaging and therapy. Plenum, New York, pp 409–429Google Scholar
  7. Boxer GM, Begent RHJ, Kelly AMB, Southall PJ, Blair SB, Theodorou NA, Dawson PM, Ledermann J A (1992) Factors influencing variability of localization of antibodies to carcinoembryonic antigen ( CEA) in patients with colorectal carcinoma — implications for radioimmunotherapy. Br J Cancer 65: 825–831Google Scholar
  8. Brady LW, Miyamoto CT, Bender H, Rackover M, Emrich J, Eshleman J, Woo D, Morabito M, Steplewski Z, Koprowski H, Parker J, Lazarro B, Black P, Nair S, McCormack T, Siegenschmidt H (1993) High grade gliomas of the brain: 125-I-EGFr as an adjuvant to primary tumors. Utilization of the radiolabeled MAb 425/EMD 55900 in the management of high grade gliomas. Strahlenther Onkol 169: 366–367Google Scholar
  9. Brown I (1986) Astatine-211: its possible applications in cancer therapy. Appl Radiat Isot 37: 789–798CrossRefGoogle Scholar
  10. Chen FM, Epstein AL, Li Z, Taylor CR (1990) A comparative autoradiographic study demonstrating differential intratumor localization of monoclonal antibodies to cell surface (Lym-1) and intracellular (TNT-1) antigens. J Nucl Med 31: 1059–1066PubMedGoogle Scholar
  11. Chiou RK, Wessels BW, Woodson M, Limas C (1991) Study of clinical thermoluminiscent dosimeters ( CL.TLD) in direct measurement of radiation absorbed dose for radioimmunotherapy. Radiat Appl Isot 42: 181–186Google Scholar
  12. Cobb LM, Harrison A, Butler SA (1988) Toxicity of astatine-211 in the mouse. Hum Toxicol 7: 529–534PubMedCrossRefGoogle Scholar
  13. Cruczman MS, Divgi CR, Dtraus DJ, Lovett DR, Garin-Chesa P, Yeh S, Feirt N, Graham M, Leibel S, Gee TS, Myers J, Pentlow K, Finn R, Schwarts M, Oettgen HF, Larson SM, Old LJ, Scheinberg DA (1991) 131Iodine-labeled monoclonal antibody therapy of acute myelogenous leukemia and B cell lymphoma. Antibiot Immunoconj Radiopahrm 4:787–793Google Scholar
  14. Daghighian F, Pentlow KS, Larson SM, Graham MC, DiResta GR, Yeh SDJ, Macaplinec H, Finn RD, Arbit E, Cheung NKV (1993) Development of a method to measure the kinetics of radiolabeled monoclonal antibodies in human tumour with applications to microdosimetry: positron emission tomography studies of iodine-124 labelled 3F8 monoclonal antibody in glioma. Eur J Nucl Med 20: 402–409PubMedCrossRefGoogle Scholar
  15. Demidecki AJ, Williams LE, Wong JYC, Wessels BW, Yorke ED, Strandh M, Strand SE (1993) Consideration on the calibration of small thermoluminescent dosimeters ( TLDs) used for measurement of beta particle absorbed doses in liquid environments. Med Phys 20: 1079–1087Google Scholar
  16. Nardo GL, Nardo SJ, Mills SN, Lewis JP, O’Grady LF, Levy NB (1990) Treatment of B cell malignancies in patients using 1-131 LYM-1. J Nucl Med 31: 723–724Google Scholar
  17. DeNardo GL, DeNardo SJ (1993) Radioimmunotherapy for lymphoma: the Sacramento experience. Strahlenther Onkol 169: 376Google Scholar
  18. DeNardo GL, Maddock SW, Sgouros G, Scheibe PO, DeNardo SJ (1993) Immunoadsorption: an enhancement strategy for radioimmunotherapy. J Nucl Med 34: 1020–1027Google Scholar
  19. Dillehaye LE (1990) A model of cell killing by low-dose rate radiation including repair of sublethal damage, G2 block, and cell division. Radiat Res 124: 201–207CrossRefGoogle Scholar
  20. Dillehaye LE, Williams JR (1990) Radiobiology of dose-rate patterns achievable in radioimmunoglobulin therapy. Front Radiat Ther Oncol 24: 96–103Google Scholar
  21. Eary JF (1993) Radioimmunotherapy of hematologic malignancy with I-131 labeled antibodies. Strahlenther Onkol 169: 366–367Google Scholar
  22. Eary JF, Press OW, Badger CC, Durack LD, Richter KY, Addison SJ, Krohn KA, Fisher DR, Porter BA, Williams DL, Martin PJJ, Appelbaum FR, Levy R, Brown WB, Miller R, Nelp WP, Berstein ID (1990) Imaging and treatment of B- cell lymphoma. J Nucl Med 31: 1257–1268PubMedGoogle Scholar
  23. Eklund KE, Williams JR (1991) A method for quantitative autoradiography over stained sections of tumors exposed in vivo to radiolabeled antibodies. Int J Radiat Oncol Biol Phys 21: 1635–1642PubMedCrossRefGoogle Scholar
  24. Feinendegen LE (1975) Biological damage from the Auger effect, possible benefits. Radiat Environ Biophys 12: 85–99PubMedCrossRefGoogle Scholar
  25. Garg PK, Bigner DD, Zalutsky MR (1991) Tumour dose enhancement via improved antibody radiohalogenation. In: Epenetos A (ed) Monoclonal antibodies: applications in clinical oncology. Chapman and Hall, London, pp 315–322Google Scholar
  26. Gladstone DJ, Chin LM (1991) Automated data collection and analysis system for MOSFET radiation detectors. Med Phys 18: 542–548PubMedCrossRefGoogle Scholar
  27. Gladstone DJ, Lu XQ, Humm JL, Bowman HF, Chin LM (1994) A miniature MOSFET radiation dosimeter probe. Med Phys 21: 1721–1728PubMedCrossRefGoogle Scholar
  28. Goddu SM, Howell RW, Rao DV (1994a) Cellular dosimetry: absorbed fractions for monoenergetic electron and alpha particle sources and S-values for radionuclides uniformly distributed in different cell compartments. J Nucl Med 35: 303–316PubMedGoogle Scholar
  29. Goddu SM, Rao DV, Howell RW (1994b) Multicellular dosimetry for micro-metastases: dependence of self-dose versus cross-dose to cell nuclei on type and energy of radiation, and subcellular distribution of radionuclides. J Nucl Med (in press)Google Scholar
  30. Green AJ, Dewhurst SE, Begent RJ, Bagshawe KD, Riggs SJ (1990) Accurate quantification of 131I distribution by gamma camera imaging. Eur J Nucl Med 16: 361–365PubMedCrossRefGoogle Scholar
  31. Griffith MH, Yorke ED, Wessels BW, DeNardo GL, Neacy WP (1988) Direct dose confirmation of quantitative autoradiography with micro-TLD measurements for radioimmunotherapy. J Nucl Med 29: 1795–1809PubMedGoogle Scholar
  32. Hall EJ (1988) Radiobiology for the radiologist, 3rd edn. Lippincott, PhiladelphiaGoogle Scholar
  33. Harrison A, Royle L (1987) Efficacy of astatine-211-labeled monoclonal antibody in treatment of murine T-cell lymphoma. Monogr Natl Cancer Inst 3: 157–158Google Scholar
  34. Hofer KG (1980) Radiation biology and potential therapeutic applications of radionuclides. Bull Cancer (Paris) 67: 343–353Google Scholar
  35. Holmes-Siedle A, Adams L (1986) Radfet: a review of the use of metal-oxide-silicon devices as integrating dosimeters. Radiat Phys Chem 28: 235–246Google Scholar
  36. Hughes RC, Huffman D, Snelling JV, Zipperian TE, Ricco AJ, Kelsey CA (1988) Miniature radiation dosimeter for in vivo radiation measurements. Int J Radiat Oncol Biol Phys 14: 963–967PubMedCrossRefGoogle Scholar
  37. Humm JL (1986) Dosimetric aspects of radiolabeled antibodies for tumor therapy. J Nucl Med 27: 1490–1497PubMedGoogle Scholar
  38. Humm JL (1987) A microdosimetric model of astatine-211 labelled antibodies for radioimmunotherapy. Int J Radiat Oncol Biol Phys 13: 1767–1773PubMedCrossRefGoogle Scholar
  39. Humm JL, Charlton DE (1989) A new calculational method to assess the therapeutic potential of Auger electron emission. Int J Radiat Oncol Biol Phys 17: 351–360PubMedCrossRefGoogle Scholar
  40. Humm JL, Chin LM (1991) Review of experimental methods to determine radiation dose in radioimmunotherapy. Antibiot Immunoconj Radiopharm 4 (4): 613–621Google Scholar
  41. Humm JL, Chin LM (1993) A model of cell inactivation by alpha particle internal emitters. Radiat Res 134: 143–150PubMedCrossRefGoogle Scholar
  42. Humm JL, Cobb LM (1990) Nonuniformity of tumor dose in radioimmunotherapy. J Nucl Med 31: 75–83PubMedGoogle Scholar
  43. Humm JL, Chin LM, Cobb LM, Begent RHJ (1990) Microdosimetry in radioimmunotherapy. Radiat Prot Dosim 31 (l–4): 433–436Google Scholar
  44. Humm JL, Chin LM, Lanza RC, Schafer CM, Speidel M, Greene RE (1992) Digital imaging for autoradiography. In: Greene RE, Oestmann W (eds) Computed digital radiography in clinical practice. Thieme, New York, pp 167–172Google Scholar
  45. Humm JL, Roeske JC, Fisher DR, Chen GTY (1993a) Microdosimetric concepts in radioimmunotherapy. Med Phys 20 (2): 535–541PubMedCrossRefGoogle Scholar
  46. Humm JL, Macklis RM, Bump K, Cobb LM, Chin LM (1993b) Internal dosimetry using data derived from tissue autoradiographs. J Nucl Med 34: 1811–1817PubMedGoogle Scholar
  47. Humm JL, Macklis RM, Yang Y, Bump K, Chin LM (1994) Image analysis for the study of radionuclide distribution in tissue sections. J Nucl Med 35: 1217–1225PubMedGoogle Scholar
  48. Huneke RB, Pippin G, Squire RA, Brechbiel MW, Gansow QA, Strand M (1992) Effective alpha-particle-mediated radioimmunotherapy of murine leukemia. Cancer Res 52: 5818–5820PubMedGoogle Scholar
  49. Jackson A, Kutcher GJ, Yorke ED (1993) Probability of radiation-induced complications for normal tissues with parallel architecture subject to nonuniform irradiation. Med Phys 20: 613–625PubMedCrossRefGoogle Scholar
  50. Johnston RF, Pickett SC, Barker DL (1990) Autoradiography using storage phosphor technology. Electrophoresis 11: 355–360PubMedCrossRefGoogle Scholar
  51. Jungermann JA, Yu KHP, Zanelli CI (1984) Radiation absorbed dose estimates at the cellular level for some electron-emitting radionuclides for radioimmunotherapy. Int J Appl Radiat Isot 35: 883–888CrossRefGoogle Scholar
  52. Kaminski MS, Fig LM, Zasadny KR, Koral KF, DelRosario RB, Francis IR, Hanson CA, Normolle DP, Medgett E, Lui CP, Moon S, Scott P, Miller RA, Wahl RL (1992) Imaging, dosimetry and radioimmunotherapy with I-131-labeled anti-CD37 antibody in B-cell lymphoma. J Clin Oncol 10: 1696–1711PubMedGoogle Scholar
  53. Kassis AI, Howell RW, Sastry KSR, Adelstein SJ (1988) Positional effects of Auger decays in mammalian cells in culture. In: Baverstock K, Charlton DE (eds) International Workshop on DNA damage by Auger emitters. Taylor and Francis, London, pp 1–13Google Scholar
  54. Kemstead JT, Coakham HB, Bullimore JA, Chandler CL, Hopkins K (1993) Treatment of diffuse leptomeningeal malignancy by intrathecal injections of 131I radio- immunoconjugates. Strahlenther Onkol 169: 366–367Google Scholar
  55. Kennel SJ (1992) Effects of target antigen competition on distribution of monoclonal antibody to solid tumors. Cancer Res 52: 1284–1290PubMedGoogle Scholar
  56. Knox SJ, Goris ML, Wessels BW (1992) Overview of animal studies comparing radioimmunotherapy with dose equivalent external beam irradiation. Radiother Oncol 23: 111–117PubMedCrossRefGoogle Scholar
  57. Kozak RW, Atcher RW, Gansow QA, Friedman AM, Hines JJ, Waldman TA (1986) Bismuth-212 labeled anti-Tac monoclonal antibody: alpha-particle emitting radionuclides as modalities for radioimmunotherapy. Proc Natl Acad Sci USA 83: 474–478PubMedCrossRefGoogle Scholar
  58. Kurtzman SH, Russo A, Mitchell JB, DeGraff W, Sindelar WF, Brachbiel MW, Gansow OA, Friedman AM, Hines JJ, Gamson J, Atcher RW (1988) 212Bismuth linked to an antipancreatic carcinoma antibody: model for alpha-particle-emitter radioimmunotherapy. J Natl Cancer Inst 80:449–452PubMedCrossRefGoogle Scholar
  59. Langmuir VK, Fowler JF, Knox SJ, Wessels BW, Sutherland RM, Wong JYC (1992) Radiobiology of radiolabeled antibody therapy as applied to tumor dosimetry. Med Phys 20 (2): 601–610CrossRefGoogle Scholar
  60. Lear JL, Plotnick J, Rumley S (1987) Digital autoradiography: design, development and evaluation of a solid state image analyzer. J Nucl Med 28: 218–222PubMedGoogle Scholar
  61. Leichner PK, Yang NC, Wessels BW, Hawkins WG, Order SE, Klein JL (1990) Dosimetry and treatment planning in radioimmunotherapy. Front Radiat Ther Oncol 24: 109–120PubMedGoogle Scholar
  62. Ljungberg M, King MA, Hademenos GJ, Strand SE (1994) Comparison of four scatter correction methods using Monte-Carlo simulated source distributions. J Nucl Med 35: 143–151PubMedGoogle Scholar
  63. Macklis RM, Kaplan WD, Ferrera JLM, Atcher RW, Hines JJ, Burakoff SJ, Coleman CN (1989) Alpha-particle radioimmunotherapy: animal models and clinical prospects. Int J Radiat Oncol Biol Phys 16: 1377–1387PubMedCrossRefGoogle Scholar
  64. Macklis RM, Lin JY, Atcher RW, Hines JJ, Humm JL (1992) Cellular kinetics, dosimetry and radiobiology of alpha particle radioimmunotherapy. Induction of apoptosis. Radiat Res 130: 220–226Google Scholar
  65. Macklis RM, Beresford BE, Palayoor S, Sweeney S, Humm JL (1993) Cell cycle alterations, apoptosis and response to low dose radioimmunotherapy in lymphoma cells. Int J Radiat Oncol Biol Phys 27: 643–650PubMedCrossRefGoogle Scholar
  66. Makrigiorgos GM, Ito S, Baranowska-Kortylewicz J, Vinter DW, Iqbal A, Van Den Abbeele AD, Adelstein SJ, Kassis AI (1990) Inhomogeneous deposition of radiopharmaceuticals for estimation of radiation risks: experimental evidence and dosimetric implications. J Nucl Med 31: 1358–1363PubMedGoogle Scholar
  67. Mausner LF, Srivastava SC (1992) Selection of radionuclides for radioimmunotherapy. Med Phys 20 (2): 503–509CrossRefGoogle Scholar
  68. Miyahara J, Takahashi T, Amemiya Y, Kamiya N, Satow YA (1986) A new type of X-ray area detector utilizing laser stimulated luminescence. Nucl Intr Methods Phys Res A264: 512–578Google Scholar
  69. Niemierko A, Goitein M (1993) Modeling of normal tissue response to radiation: the critical volume model. Int J Radiat Oncol Biol Phys 25: 135–145PubMedCrossRefGoogle Scholar
  70. O’Donoghue JA (1993) Optimal therapeutic strategies for RIT. Strahlenther Onkol 169: 372–373Google Scholar
  71. Palme DF, Berkopec JM, Wessels BW, Elson MK, Lange PH, Vessela RL (1991) Dosimetry and pharmacokinetic’ of monoclonal antibody A6H with human renal cell carcinoma xenografts: single dose study. Int J Nucl Med Biol 18: 527–537Google Scholar
  72. Paterson R, Parker HM (1938) A dosage system for interstitial radium therapy. Br J Radiol 11: 252CrossRefGoogle Scholar
  73. Pedley RB, Boxer GM, Boden JA, Southall PJ, Begent RHJ, Bagshawe KD, Humm JL, Searle F (1990) Preliminary observations on the microdistribution of labelled antibodies in human colonic adenocarcinoma xenografts: relevance to microdosimetry. Br J Cancer 61: 218–220PubMedCrossRefGoogle Scholar
  74. Pentlow KS, Graham MC, Lambrecht RM, Cheung NKV, Larson SM (1991) Quantitative imaging of I-124 using positron emission tomography with applications to radioimmunodiagnosis and radioimmunotherapy. Med Phys 18: 357–366PubMedCrossRefGoogle Scholar
  75. Pizer BL, Papanastassiou V, Moseley R, Tzanis S, Hancock JP, Kemshead JT, Coakham HB (1991) Meningeal leukemia and medulloblastoma: preliminary experience with intrathecal radioimmunotherapy. Antibiot Immunoconj Radiopharm 4: 753–761Google Scholar
  76. Press OW, Eary JF, Bager CC, Martin PJ, Appelbaum FR, Levy R, Miller R, Brown S, Nelp WB, Krohn KA, Fisher D, DeSantes K, Porter B, Kidd P, Thomas ED, Berstein ED (1989) Treatment of refractory non-Hodgkin’s lymphoma with radiolabeled MB-1 (anti-CD37) antibody. J Clin Oncol 7: 1027–1038PubMedGoogle Scholar
  77. Roberson PL, Buchsbaum DJ, Heidorn DB, Ten Haken RK (1992) Three-dimensional tumor dosimetry for radioimmunotherapy using serial autoradiography. Int J Radiat Oncol Biol Phys 25: 329–334Google Scholar
  78. Rogers AW (1979) Techniques of autoradiography. Elsevier/North Holland, New YorkGoogle Scholar
  79. Rotmensch J, Atcher RW, Schlenker R, Hines JJ, Grdina D, Block BS, Press MF, Herbst AL, Weichselbaum RR (1989a) The effect of the alpha-emitting radionuclide lead-212 on human ovarian carcinoma: a potential new form of therapy. Ynecol Oncol 32: 236–239CrossRefGoogle Scholar
  80. Rotmensch J, Atcher RW, Hines JJ, Toohill M, Herbst AL (1989b) Comparison of short-lived high LET alpha-emitting radionuclides lead-212 and bismuth-212 to low-LET X-rays on ovarian carcinoma. Gynecol Oncol 35: 297–300PubMedCrossRefGoogle Scholar
  81. Sastry KSR, Haydock C, Basha AM, Rao DV (1985) Electron dosimetry for radioimmunotherapy: optimal radionuclide energy. Radiat Prot Dosim 13: 249–252Google Scholar
  82. Schneider-Gädicke E, Humm JL, Lau CC, Macklis RM, Bastert G, Knapp RC (1992) Analysis of cytotoxicity of 131I-labeled OC125 F(ab′)2 on human epithelial ovarian cancer cell lines. Radiother Oncol 23: 150–159PubMedCrossRefGoogle Scholar
  83. Schultheiss TE, Orton CG, Peck RA (1983) Models in radiation therapy: volume effects. Med Phys 10: 410–415PubMedCrossRefGoogle Scholar
  84. Schwartz MA, Lovett DR, Redner A, Finn RD, Graham MC, Divgi CR, Dantis L, Gee TS, Andreef M, Old LJ, Larson SM, Scheinberg DA (1993) Dose-escalation trial of M195 labeled with iodine 131 for cytoreduction and marrow ablation in relapsed or refractory myeloid leukemias. J Clin Oncol 11: 294–303PubMedGoogle Scholar
  85. Scott BR, Dillehay LE (1990) A model for hematopoietic death in man from irradiation of bone marrow during radioimmunotherapy. Br J Radiol 63: 862–870PubMedCrossRefGoogle Scholar
  86. Sgouros G (1992) Plasmapheresis in radioimmunotherapy of micrometastases: a mathematical modeling and dosimetrical analysis. J Nucl Med 33: 2167–2179PubMedGoogle Scholar
  87. Sgouros G (1993) Bone marrow dosimetry in radioimmunotherapy: theoretical considerations. J Nucl Med 34: 689–694PubMedGoogle Scholar
  88. Sgouros G, Graham MC, Divgi CR, Larson SM, Scheinberg DA (1993) Modeling and dosimetry of monoclonal antibody M195 (anti-CD33) in acute myelogenous leukemia. J Nucl Med 34: 422–430PubMedGoogle Scholar
  89. Siegel JA, Stabin MG (1994) Absorbed fractions for electrons and beta particles in spheres of various sizes. J Nucl Med 35: 152–156PubMedGoogle Scholar
  90. Siegel JA, Wessels BW, Watson EE, Stabin MG, Vriesendorp HM, Bradley EW, Badger CC, Brill BA, Kwok CS, Stickney DR, Eckerman KF, Fisher DR, Buchsbaum DJ, Order SE (1990) Bone marrow dosimetry and toxicity for radioimmunotherapy. Antibiot Immunoconj Radiopharm 3: 213–233Google Scholar
  91. Sim HE (1986) 221At and 90Y: two nuclides for potential use in tumour therapy — production at Harwell laboratory. United Kingdom Atomic Energy Authority (AERE report R-12209)Google Scholar
  92. Simonson RB, Ultee ME, Hauler JA, Alvarez VL (1990) Radioimmunotherapy of peritoneal human colon cancer xenografts with site-specifically modified 212Bi-labeled antibody. Cancer Res 50: 985–988Google Scholar
  93. Sitzmann JV, Order SE, Klein JL, Leichner PK, Fishman EK, Smith GW (1987) Conversion by new treatment modalities of nonresectable hepatocellular cancer. J Clin Oncol 5: 1566–1573PubMedGoogle Scholar
  94. Speidel MT, Humm JL, Bellerive MR, Mulkern R, Atcher RW, Hines JJ, Macklis RM (1991) Assessment of dosimetry and early renal radiotoxicity after treatment with an alpha particle emitting radiopharmaceutical. Antibiot Immunoconj. Radiopharm 4 (4): 681–692Google Scholar
  95. Strand SE, Norrgen K, Ingvar C, Erlandsson K, Persson EC (1989) Plasmapheresis as a tool for enhancing contrast in radioimmunoimaging and modifying doses in radioimmunotherapy. Med Phys 16: 465Google Scholar
  96. Vriesendorp HM, Herpst JM, Leichner PK, Klein JL, Order SE (1989) Polyclonal 90Yttrium labeled antiferritin for refractory Hodgkin’s disease. Int J Radiat Oncol Biol Phys 17: 815–821PubMedCrossRefGoogle Scholar
  97. Wessels BW, Griffith MM (1986) Miniature thermoluminescent dosimeter absorbed dose measurements in tissue phantom models. J Nucl Med 27: 1308–1314PubMedGoogle Scholar
  98. Wessels BW, Vessela RL, Berkopec JM, Smith GK, Bradley EW (1989) Radiobiological comparison of external beam irradiation and radioimmunotherapy in renal cell carcinoma xenografts. Int J Radiat Oncol Biol Phys 17: 1257–1263PubMedCrossRefGoogle Scholar
  99. Wessely R, Bihl H, Friedrich E, Marzku S (1991) Assessment of radiation dose in xenografts. In: Epenetos A (ed) Monoclonal antibodies: applications in clinical oncology. Chapman and Hall, pp 315–322Google Scholar
  100. Wheldon TE, O’Donoghue JA (1990) The radiobiology of targeted radiotherapy. Int J Radiat Biol 58: 1–21PubMedCrossRefGoogle Scholar
  101. Wheldon TE, O’Donoghue JA, Berrett A, Michalowski AS (1991) The curability of tumours of differing size by targeted radiotherapy using 131I and 90Y. Radiother Oncol 21: 91–99PubMedCrossRefGoogle Scholar
  102. Wilbur DS (1990) Potential use of alpha emitting radionuclides in the treatment of cancer. Antibiot Immunoconj Radiopharm 4: 85–97Google Scholar
  103. Yorke ED, Wessels BW, Bradley EW (1991) Absorbed dose averages and dose heterogeneities in radioimmunotherapy. Antibiot Immunoconj Radiopharm 4: 623–629Google Scholar
  104. Zalutsky MR, Garg PK, Schuster JM, Garg S, Archer GE, Fuchs HE, Bigner DD (1991) Effective treatment of experimental human neoplastic meningitis (NM) with intrathecal astatine-211 monoclonal antibody ( MAb ). J Nucl Med Suppl 32: 922Google Scholar
  105. Zanzonico PB, Edwards C, Sgouros G, Strauss A, Bigler RE, Hurley JR, Becker DV (1990) Practical dosimetry: quantitative imaging in radionuclide therapy. In: Adelstein SJ (ed) Dosimetry of administered radionuclides. The American College of Nuclear Physicians, pp 275–295 (ACNP publication #90–2)Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1996

Authors and Affiliations

  • J. L. Humm
    • 1
  1. 1.Department of Medical PhysicsMemorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations