Skip to main content

Feedback Mechanisms Between Degradation and Primary Production in the Marine Pelagic Environment

  • Conference paper
Carbon Sequestration in the Biosphere

Part of the book series: NATO ASI Series ((ASII,volume 33))

Abstract

Carbon sequestration in the terrestrial biosphere is mainly a question of accumulating organic material in biomass or in its undegraded remains, since degradation of organic material in terrestrial systems will normally lead to a more or less instantaneous release of CO2 to the atmosphere. In terms of increased sequestration, the most relevant aspect of degradative processes may then seem primarily to be the question of how degradation may be restrained. While the marine system is partly analogous, there is the important difference that the deep ocean constitutes a huge reservoir where carbon can be stored for extended periods away from contact with the atmosphere, irrespective of whether it is in organic or inorganic form. Transport processes moving material between the upper layer where primary production occurs, and the ocean’s interior, are therefore an essential component of carbon sequestration in the marine system. In large areas of the world’s oceans, primary production in the upper, photic zone is assumed to be limited by the availability of mineral nutrients such as nitrogen, phosphorus or iron. Microbial degradation of organic material interferes closely with the cycling of such mineral nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amon RMW; Benner R (1994) Rapid cycling of high-molecular-weight dissolved organic matter in the ocean. Nature 39:549–551.

    Article  Google Scholar 

  • Anderson LA; Sarmiento JL (1994) Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochemical Cycles 8:65–80.

    Article  CAS  Google Scholar 

  • Berner RA; Ruttenberg KC; Ingall ED; Rao J-L (1993) The nature of phosphorus burial in modern marine sediments. In: Wollast R (ed) Interactions of C,N,P and S biogeochemical cycles and global change. NATO ASI Series Vol I 4 Springer, Berlin Heidelberg, pp 365–378.

    Chapter  Google Scholar 

  • Bethoux JP; Morin P; Madec C; Gentili B (1992) Phosphorus and nitrogen behavior in the Mediterranean Sea. Deep-Sea Res. 39:1641–1654.

    Article  CAS  Google Scholar 

  • Bishop JKB; Collier RW; Ketten DR; Edmond JM (1977) The chemistry, biology, and vertical flux of particulate matter from the upper 400m of the equatorial Atlantic ocean. Deep-Sea Res. 24:511–548.

    Article  CAS  Google Scholar 

  • Bjørnsen PK (1988) Phytoplankton exudation of organic matter: Why do healthy cells do it? Iimnol. Oceanogr. 33:151–154.

    Article  Google Scholar 

  • Boyle EA (1988) The role of vertical chemical fractionation in controlling late quaternary atmospheric carbon dioxide. J.Geophys.Res. 93:15,701-15,714.

    Article  CAS  Google Scholar 

  • Brand LE (1991) Minimum iron requirements of marine phytoplankton and the implications for the biogeochemical control of new production. Iimnol.Oceanogr. 36:1756–1771.

    Article  Google Scholar 

  • Bratbak G; Thingstad TF (1985) Phytoplankton-bacteria interactions: an apparent paradox? Analysis of a model system with both competition and commensalism. Mar.Ecol.Prog.Ser. 25:23–30.

    Article  Google Scholar 

  • Campbell L; Vaulot D (1993) Photosynthetic picoplankton community structure in the subtropical North Pacific Ocean near Hawaii (station ALOHA). Deep-Sea Res. 40:2043–2060.

    Article  Google Scholar 

  • Copin-Montégut G; Avril B (1993) Vertical distribution and temporal variation of dissolved organic carbon in the North-Western Mediterranean Sea. Deep-Sea Res. 40:1963–1972.

    Article  Google Scholar 

  • Codispoti LA (1989) Phosphorus vs. nitrogen limitation of new and export production. In: Berger WH et al. (eds) Productivity of the ocean: Present and past. Dahlem Conf., Wiley, pp 377–408.

    Google Scholar 

  • Cullen JJ (1991) Hypotheses to explain high-nutrient conditions in the open sea. IimnoLOceanogr. 36:1578–1599.

    CAS  Google Scholar 

  • de Jonge VN; Villerius LA (1989) Possible role of carbonate dissolution in estuarine phosphate dynamics. Iimnol.Oceanogr. 34:332–340.

    Article  Google Scholar 

  • Dolan J; Thingstad TF; Rassoulzadegan F (in press) Phosphate transfer between microbial size-fractions during autumn in Villefranche Bay (NW Mediterranean Sea), France in autumn 1992. Ophelia.

    Google Scholar 

  • Dugdale RC; Goering JJ (1967) Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol.Oceanogr. 12:196–206.

    Article  CAS  Google Scholar 

  • Duursma EK (1961) Dissolved organic carbon, nitrogen and phosphorus. Neth. J. Sea Res. 1:1–147.

    Article  Google Scholar 

  • Fisher TR; Peele ER; Ammerman JW; Harding LW Jr (1992) Nutrient limitation of phytoplankton in the Chesapeake Bay. Mar.Ecol.Prog.Ser. 82:51–63.

    Article  Google Scholar 

  • Frankignoulle M (1994) Aquatic calcification as a source of carbon dioxide. This volume.

    Google Scholar 

  • Frankignoulle M; Canon C; Gattuso J-P (1994) Marine calcification as a source of carbon dioxide: Positive feedback of increasing atmospheric CO2 Limnol.Oceanogr. 39:458–462.

    Article  CAS  Google Scholar 

  • Froelich PN; Bender ML; Luedtke NA; Heath GR; De Vries T (1982) The marine phosphorus cycle. AmJ.Sci. 282:475–511.

    Google Scholar 

  • Garber JH (1984) Laboratory study of nitrogen and phosphorus remineralization during the decomposition of coastal plankton and seston. Estuar.Coastal Shelf Sci. 18:685–702.

    Article  CAS  Google Scholar 

  • Goldman JC (1993) Potential role of large oceanic diatoms in new primary production. Deep-sea Res. 40:159–168.

    Article  Google Scholar 

  • Hickel W; Mangelsdorf P; Berg J (1993) The human impact in the German Bight: eutrophication during three decades (1962–1991). Helgoländer Meeresunters. 47:243–263.

    Article  Google Scholar 

  • Hirschler A; Lucas J; Hubert J-G (1990) Bacterial involvement in apatite genesis. FEMS Microbiol.Ecol. 73:211–220.

    Article  CAS  Google Scholar 

  • Jumars PA; Penry DL; Baross JA; Perry MJ; Frost BW (1989) Closing the microbial loop: Dissolved carbon pathway from to heterotrophic bacteria from incomplete ingestion, digestion and absorption in animals. Deep-sea Res. 36:483–495.

    Article  CAS  Google Scholar 

  • Jumars PA; Deming JW; Hill PS; Karp-Boss L; Dade WB (1993) Physical constraints on marine osmotrophy in an optimal foraging context. Mar. Microbial Food Webs 7:121–161.

    Google Scholar 

  • Kirchman D; Suzuki Y; Garside C; Ducklow HW (1991) High turnover rates of dissolved organic carbon during a spring phytoplankton bloom. Nature 352:612–614.

    Article  CAS  Google Scholar 

  • Kiørboe T; Kaas H; Kruse B; Møhlenberg F; Tiselius P; Ærtebjerg G (1990) The structure of the pelagic food web in relation to water column structure in the Skagerak. Mar.Ecol.Prog.Ser. 59:19–32.

    Article  Google Scholar 

  • Krom MD; Kress N; Brenner S; Gordon LI (1991) Phosphorus limitation of primary productivity in the eastern Mediterranean Sea. Limnol.Oceanogr. 36:424–432.

    Article  CAS  Google Scholar 

  • Lancelot C; Wassmann P; Barth H (1994) Ecology of Phaeocystis-dommaitd ecosystems. J.Marine Systems 5:1–4.

    Article  Google Scholar 

  • Legendre L (1990) The significance of microalgal blooms for fisheries and for the export of particulate organic carbon in the oceans. J.Plankton Res. 12:681–699.

    Article  CAS  Google Scholar 

  • Legendre L; Gosselin M (1989) New production and export of organic matter to the deep ocean: consequences of some recent discoveries. Limnol.Oceanogr. 34:1374–1380.

    Article  CAS  Google Scholar 

  • Lenz J (1992) Microbial loop, microbial food web and classical food chain: Their significance in pelagic marine ecosystems. Arch.Hydrobiol.Beih. 37:265–278.

    Google Scholar 

  • Li WKW (1994) Primary production of prochlorophytes, cyanobacteria and eucaryotic ultraphytoplankton: Measurements from flow cytometric sorting. Limnol. Oceanogr. 39:169–175.

    Article  CAS  Google Scholar 

  • Malone TC (1980) Algal size. In: Morris I (ed) The physiological ecology of phytoplankton. Blackwell, Oxford, pp 433–463.

    Google Scholar 

  • Martin JH; Gordon M; Fitzwater SE (1991) The case for iron. Limnol.Oceanogr. 36:1793–1802.

    Article  Google Scholar 

  • Martin JH; Knauer GA; Bruland K (1979) Fluxes of particulate carbon, nitrogen and phosphorus in the upper water column of the northeast Pacific. Deep-Sea Res. 26:97–108.

    Article  Google Scholar 

  • Martin JH; Knauer GA; Karl DM; Broenkow WW (1987) VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Research 34:267–285.

    Article  CAS  Google Scholar 

  • Myklestad S; Holm-Hansen O; Vårum KM; Volcani BE (1989) Rate of release of extracellular amino acids and carbohydrates from the marine diatom Chaetocheros affinis. J.Plankton Res. 11:763–773.

    Article  CAS  Google Scholar 

  • Najjar RG; Sarmiento JL; Toggweiler JR (1992) Downward transport and fate of organic matter in the ocean: Simulations with a general circulation model. Global Biogeochemical Cycles 6:45–76.

    Article  CAS  Google Scholar 

  • Passow U; Alldredge AL; Logan BE (1994) The role of particulate carbohydrate exudates in the flocculation of diatom blooms. Deep Sea Res. 41:335–357.

    Article  CAS  Google Scholar 

  • Pengerud B; Skjoldal EF; Thingstad TF (1987) The reciprocal interaction between degradation of glucose and ecosystem structure. Studies in mixed chemostat cultures of marine bacteria, algae, and bacterivorous nanoflagellates. Mar.Ecol.Prog.Ser. 35:111–117.

    Article  CAS  Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am.Sci 46:205–221.

    CAS  Google Scholar 

  • Redfield AC; Ketchum BH; Richards FA (1963) The influence of organisms on the composition of seawater. In: Hill MN (ed) The Sea. John Wiley & Sons, Vol.2 pp 26-77.

    Google Scholar 

  • Reid RT; Butler A (1991) Investigation of the mechanism of iron acquisition by the marine bacterium Alteromonas luteoviolaceus: Characterization of siderophore production. Limnol.Oceanogr. 36:1783–1792.

    Article  CAS  Google Scholar 

  • Reid RT; Live DH; Faulkner DJ; Butler A (1993) A siderophore from a marine bacterium with an exceptional ferric ion affinity constant. Nature 366:455–456.

    Article  CAS  Google Scholar 

  • Sakshaug E; Andresen K; Myklestad S; Olsen Y (1983) Nutrient status of phytoplankton communities in Norwegian waters (marine, brackish, and fresh) as revealed by their chemical composition. J.Plankton Res. 5:175–196.

    Article  CAS  Google Scholar 

  • Smith SV (1984) Phosphorous versus nitrogen limitation in the marine environment. Limnol.Oceanogr. 29:1149–1160.

    Article  CAS  Google Scholar 

  • Smith DC; Simon M; Alldredge AL; Azam F (1992) Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359:139–142.

    Article  CAS  Google Scholar 

  • Sugimura Y; Suzuki Y (1988) A high-temperature catalytic oxidation method for the determination of non-volatile dissolved organic carbon in seawater by a direct injection method. Mar.Chem. 24:105–131.

    Article  CAS  Google Scholar 

  • Thingstad TF (1993) Microbial processes and the biological carbon pump. In: Evans GT, Fasham MJR (eds) Towards a model of ocean biogeochemical processes. NATO ASI Series Vol I 10, Springer Verlag, Berlin Heidelberg, pp 193–208.

    Chapter  Google Scholar 

  • Thingstad TF; Billen G (1994) Microbial degradation of Phaeocystis material in the water column. J.Marine Systems 5:55–66.

    Article  Google Scholar 

  • Thingstad TF; Heldal M; Bratbak G; Dundas I (1993a) Are viruses important partners in pelagic food webs? TREE 8:209–213.

    CAS  Google Scholar 

  • Thingstad TF; Sakshaug E (1990) Control of phytoplankton growth in nutrient recycling ecosystems. Theory and terminology. Mar.Ecol.Prog.Ser. 63:261–272.

    Article  Google Scholar 

  • Thingstad TF; Skjoldal EF; Bohne RA (1993b) Phosphorus cycling and algal-bacterial competition in Sandsfjord, western Norway. Mar.Ecol.Prog.Ser. 99:239–259.

    Article  CAS  Google Scholar 

  • Toggweiler JR (1989) Is the downward dissolved organic matter (DOM) flux important in carbon transport? pp.65–83 in Berger W, Smetacek, VS, Wefer G: Productivity of the ocean, present and past. Wiley et Sons. New York.

    Google Scholar 

  • Watson A; Liss P; Duce R (1991) Design of a small scale in situ iron fertilization experiment. Limnol.Oceanogr. 36:1960–1965.

    Article  Google Scholar 

  • Wells ML (1994) Pumping iron in the Pacific. Nature 368:295–296.

    Article  Google Scholar 

  • Wheeler PA; Kirchman DL (1986) Utilization of inorganic and organic nitrogen by bacteria in marine systems. Limnol.Oceanogr. 31:998–1009.

    Article  CAS  Google Scholar 

  • Wassmann P (1994) Significance of sedimentation for the termination of Phaeocystis blooms. J.Marine Systems 5:81–100.

    Article  Google Scholar 

  • Williams PM; Druffel ERM (1987) Radiocarbon in dissolved organic matter in the Central North Pacific Ocean. Nature 330:246–248.

    Article  CAS  Google Scholar 

  • Zweifel UL; Norrman B; Hagstrøm A (1993) Consumption of dissolved organic carbon by marine bacteria and demand for inorganic nutrients. Mar. Ecol. Prog. Ser. 101:23–32.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thingstad, T.F. (1995). Feedback Mechanisms Between Degradation and Primary Production in the Marine Pelagic Environment. In: Beran, M.A. (eds) Carbon Sequestration in the Biosphere. NATO ASI Series, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79943-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79943-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79945-7

  • Online ISBN: 978-3-642-79943-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics